Modeling of a Stacked Gated Nanofluidic Channel

S. Kim, J. Weldon
{"title":"Modeling of a Stacked Gated Nanofluidic Channel","authors":"S. Kim, J. Weldon","doi":"10.1109/NANO.2018.8626324","DOIUrl":null,"url":null,"abstract":"The objective of this work is to model and simulate molecule transport in a novel AND nanofluidic logic gate. A nanochannel was placed between two reservoirs with asymmetric target molecule concentration, controlled by independent electrical gates at both openings. When the dimension of the fluidic channel was comparable to the thickness of the electrical double layer (EDL), the potential generated by gating became significant, which allowed for control of charged molecule diffusion through the nanochannel modulated by electrostatic repulsion and attraction. Using two independent gates, the simulations show that the stacked gate structure implemented a nanofluidic AND logic gate for the charged molecule transport. The gated nanochannel structures were modeled in the finite element software (COMSOL Multiphysics).","PeriodicalId":425521,"journal":{"name":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Conference on Nanotechnology (IEEE-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO.2018.8626324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this work is to model and simulate molecule transport in a novel AND nanofluidic logic gate. A nanochannel was placed between two reservoirs with asymmetric target molecule concentration, controlled by independent electrical gates at both openings. When the dimension of the fluidic channel was comparable to the thickness of the electrical double layer (EDL), the potential generated by gating became significant, which allowed for control of charged molecule diffusion through the nanochannel modulated by electrostatic repulsion and attraction. Using two independent gates, the simulations show that the stacked gate structure implemented a nanofluidic AND logic gate for the charged molecule transport. The gated nanochannel structures were modeled in the finite element software (COMSOL Multiphysics).
叠置门控纳米流体通道的建模
这项工作的目的是模拟和模拟分子在一个新的和纳米流体逻辑门的传输。一个纳米通道被放置在两个靶分子浓度不对称的储层之间,由两个开口的独立电子门控制。当流体通道的尺寸与双电层(EDL)的厚度相当时,门控产生的电位变得显著,这使得通过静电排斥和引力调制的纳米通道控制带电分子的扩散成为可能。通过两个独立栅极的模拟,表明堆叠栅极结构实现了纳米流体和逻辑栅极,实现了带电分子的传输。采用有限元软件COMSOL Multiphysics对门控纳米通道结构进行建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信