Model-convolution approach to modeling fluorescent protein dynamics

B. Sprague, M. Gardner, C. Pearson, P. Maddox, K. Bloom, E. Salmon, D. Odde
{"title":"Model-convolution approach to modeling fluorescent protein dynamics","authors":"B. Sprague, M. Gardner, C. Pearson, P. Maddox, K. Bloom, E. Salmon, D. Odde","doi":"10.1109/ACSSC.2004.1399478","DOIUrl":null,"url":null,"abstract":"Fluorescence microscopy is a popular technique for visualizing protein dynamics in living cells. However, the precise distribution of fluorophores underlying the observed fluorescence is not always obvious, even after deconvolution, particularly when features on a scale of 250 nm or less are of interest In contrast, quantitative models of protein dynamics predict an actual fluorophore distribution. \"Model-convolution\" is a method that bridges this gap by convolving model-predicted fluorophore location data with the point spread function of the microscope system so that simulated images can be generated and directly compared to experimental images. This article offers a practical guide to model-convolution.","PeriodicalId":396779,"journal":{"name":"Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004.","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2004.1399478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Fluorescence microscopy is a popular technique for visualizing protein dynamics in living cells. However, the precise distribution of fluorophores underlying the observed fluorescence is not always obvious, even after deconvolution, particularly when features on a scale of 250 nm or less are of interest In contrast, quantitative models of protein dynamics predict an actual fluorophore distribution. "Model-convolution" is a method that bridges this gap by convolving model-predicted fluorophore location data with the point spread function of the microscope system so that simulated images can be generated and directly compared to experimental images. This article offers a practical guide to model-convolution.
模型-卷积方法模拟荧光蛋白动力学
荧光显微镜是一种流行的技术,用于可视化蛋白质动态在活细胞。然而,即使在反褶积之后,观察到的荧光背后的荧光团的精确分布并不总是明显的,特别是当对250 nm或更小尺度的特征感兴趣时。相反,蛋白质动力学的定量模型预测了实际的荧光团分布。“模型卷积”方法通过将模型预测的荧光团位置数据与显微镜系统的点扩展函数进行卷积,从而生成模拟图像并直接与实验图像进行比较,从而弥补了这一空白。本文提供了一个实用的模型卷积指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信