I-SED: An Interactive Sound Event Detector

B. Kim, Bryan Pardo
{"title":"I-SED: An Interactive Sound Event Detector","authors":"B. Kim, Bryan Pardo","doi":"10.1145/3025171.3025231","DOIUrl":null,"url":null,"abstract":"Tagging of sound events is essential in many research areas. However, finding sound events and labeling them within a long audio file is tedious and time-consuming. Building an automatic recognition system using machine learning techniques is often not feasible because it requires a large number of human-labeled training examples and fine tuning the model for a specific application. Fully automated labeling is also not reliable enough for all uses. We present I-SED, an interactive sound detection interface using a human-in-the-loop approach that lets a user reduce the time required to label audio that is tediously long (e.g. 20 hours) to do manually and has too few prior labeled examples (e.g. one) to train a state-of-the-art machine audio labeling system. We performed a human-subject study to validate its effectiveness and the results showed that our tool helped participants label all target sound events within a recording twice as fast as labeling them manually.","PeriodicalId":166632,"journal":{"name":"Proceedings of the 22nd International Conference on Intelligent User Interfaces","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd International Conference on Intelligent User Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3025171.3025231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Tagging of sound events is essential in many research areas. However, finding sound events and labeling them within a long audio file is tedious and time-consuming. Building an automatic recognition system using machine learning techniques is often not feasible because it requires a large number of human-labeled training examples and fine tuning the model for a specific application. Fully automated labeling is also not reliable enough for all uses. We present I-SED, an interactive sound detection interface using a human-in-the-loop approach that lets a user reduce the time required to label audio that is tediously long (e.g. 20 hours) to do manually and has too few prior labeled examples (e.g. one) to train a state-of-the-art machine audio labeling system. We performed a human-subject study to validate its effectiveness and the results showed that our tool helped participants label all target sound events within a recording twice as fast as labeling them manually.
I-SED:一个交互式声音事件检测器
声音事件的标注在许多研究领域都是必不可少的。然而,寻找声音事件并在长音频文件中标记它们是乏味且耗时的。使用机器学习技术构建自动识别系统通常是不可行的,因为它需要大量人工标记的训练示例,并对特定应用的模型进行微调。全自动标签也不是所有用途都足够可靠。我们提出了I-SED,一个使用人在循环方法的交互式声音检测界面,可以让用户减少标记音频所需的时间,这些音频手动标记的时间非常长(例如20小时),并且之前标记的示例太少(例如一个),无法训练最先进的机器音频标记系统。我们进行了一项人类受试者研究来验证其有效性,结果表明,我们的工具帮助参与者标记录音中所有目标声音事件的速度是手动标记速度的两倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信