Long Term Risk: A Martingale Approach

Likuan Qin, V. Linetsky
{"title":"Long Term Risk: A Martingale Approach","authors":"Likuan Qin, V. Linetsky","doi":"10.2139/ssrn.2523110","DOIUrl":null,"url":null,"abstract":"This paper extends the long‐term factorization of the stochastic discount factor introduced and studied by Alvarez and Jermann (2005) in discrete‐time ergodic environments and by Hansen and Scheinkman (2009) and Hansen (2012) in Markovian environments to general semimartingale environments. The transitory component discounts at the stochastic rate of return on the long bond and is factorized into discounting at the long‐term yield and a positive semimartingale that extends the principal eigenfunction of Hansen and Scheinkman (2009) to the semimartingale setting. The permanent component is a martingale that accomplishes a change of probabilities to the long forward measure, the limit of T‐forward measures. The change of probabilities from the data‐generating to the long forward measure absorbs the long‐term risk‐return trade‐off and interprets the latter as the long‐term risk‐neutral measure.","PeriodicalId":129812,"journal":{"name":"Financial Engineering eJournal","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Financial Engineering eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2523110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57

Abstract

This paper extends the long‐term factorization of the stochastic discount factor introduced and studied by Alvarez and Jermann (2005) in discrete‐time ergodic environments and by Hansen and Scheinkman (2009) and Hansen (2012) in Markovian environments to general semimartingale environments. The transitory component discounts at the stochastic rate of return on the long bond and is factorized into discounting at the long‐term yield and a positive semimartingale that extends the principal eigenfunction of Hansen and Scheinkman (2009) to the semimartingale setting. The permanent component is a martingale that accomplishes a change of probabilities to the long forward measure, the limit of T‐forward measures. The change of probabilities from the data‐generating to the long forward measure absorbs the long‐term risk‐return trade‐off and interprets the latter as the long‐term risk‐neutral measure.
长期风险:鞅方法
本文将Alvarez和Jermann(2005)在离散时间遍历环境中、Hansen和Scheinkman(2009)和Hansen(2012)在马尔可夫环境中引入并研究的随机折现因子的长期分解扩展到一般半鞅环境。临时成分以长期债券的随机收益率折现,并被分解为长期收益率折现和正半鞅,将Hansen和Scheinkman(2009)的主特征函数扩展到半鞅设置。永久分量是一个鞅,它实现了对长期远期测度的概率变化,即T -远期测度的极限。从数据生成到长期远期指标的概率变化吸收了长期风险回报权衡,并将后者解释为长期风险中性指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信