R. Kress, C. Preuss, E. Mutlu, S. Clochiatti, W. Prost, N. Weimann
{"title":"THz Detectors and Emitters with On-Chip Antenna aligned on Hyper-Hemispherical Silicon Lenses","authors":"R. Kress, C. Preuss, E. Mutlu, S. Clochiatti, W. Prost, N. Weimann","doi":"10.1109/IWMTS51331.2021.9486802","DOIUrl":null,"url":null,"abstract":"On-chip antennas with radiation towards the substrate are affected by modest coupling performance to a free-space path. (Hyper-)hemispherical silicon lenses can improve the efficiency of quasi-optical emission and detection even at THz frequencies. This approach requires an alignment accuracy in the $\\mu\\mathrm{m}$-scale at THz frequencies. In this contribution, we report on the benefit of hyper-hemispherical silicon lenses in terms of relaxed alignment accuracy needs. We present the impact of alignment on quasi-optical measurements using indium phosphide resonant-tunneling diodes. The main components of the resulting setups are discussed while the effect of alignment is quantitatively evaluated for both, hemispherical and hyper-hemispherical silicon lenses. Moreover, design rules and concepts for a heterointegrated system are derived on consecutive observations.","PeriodicalId":429985,"journal":{"name":"2021 Fourth International Workshop on Mobile Terahertz Systems (IWMTS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Fourth International Workshop on Mobile Terahertz Systems (IWMTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWMTS51331.2021.9486802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
On-chip antennas with radiation towards the substrate are affected by modest coupling performance to a free-space path. (Hyper-)hemispherical silicon lenses can improve the efficiency of quasi-optical emission and detection even at THz frequencies. This approach requires an alignment accuracy in the $\mu\mathrm{m}$-scale at THz frequencies. In this contribution, we report on the benefit of hyper-hemispherical silicon lenses in terms of relaxed alignment accuracy needs. We present the impact of alignment on quasi-optical measurements using indium phosphide resonant-tunneling diodes. The main components of the resulting setups are discussed while the effect of alignment is quantitatively evaluated for both, hemispherical and hyper-hemispherical silicon lenses. Moreover, design rules and concepts for a heterointegrated system are derived on consecutive observations.