Abdullah G. Alharbi, B. Nasri, Ting Wu, Davood Shahrjerdi
{"title":"Advanced integrated sensor and layer transfer technologies for wearable bioelectronics","authors":"Abdullah G. Alharbi, B. Nasri, Ting Wu, Davood Shahrjerdi","doi":"10.1109/IEDM.2016.7838362","DOIUrl":null,"url":null,"abstract":"We discuss two emerging technologies that are central for realizing an optically powered flexible bioelectronic system. First, we discuss layer transfer through controlled spalling technology for producing high-performance flexible electronics. We present three examples: (1) advanced-node ultra-thin body silicon integrated circuits on plastic, (2) strain engineering in flexible electronics, and (3) flexible GaAs photovoltaic energy harvesters. Second, a 4-terminal biosensor is presented that is compatible with ultra-thin body silicon CMOS technology. Through in vitro glucose sensing, we demonstrate that the 4-terminal integrated biosensor enables the amplification of biochemical signals at the device level. These advanced technologies can give rise to an unprecedented boost in the performance and functionality of next-generation wearable devices.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2016.7838362","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We discuss two emerging technologies that are central for realizing an optically powered flexible bioelectronic system. First, we discuss layer transfer through controlled spalling technology for producing high-performance flexible electronics. We present three examples: (1) advanced-node ultra-thin body silicon integrated circuits on plastic, (2) strain engineering in flexible electronics, and (3) flexible GaAs photovoltaic energy harvesters. Second, a 4-terminal biosensor is presented that is compatible with ultra-thin body silicon CMOS technology. Through in vitro glucose sensing, we demonstrate that the 4-terminal integrated biosensor enables the amplification of biochemical signals at the device level. These advanced technologies can give rise to an unprecedented boost in the performance and functionality of next-generation wearable devices.