Identification of skin melanoma based on microscopic hyperspectral imaging technology

T. Fan, Yanxi Long, Xisheng Zhang, Zijing Peng, Qingli Li
{"title":"Identification of skin melanoma based on microscopic hyperspectral imaging technology","authors":"T. Fan, Yanxi Long, Xisheng Zhang, Zijing Peng, Qingli Li","doi":"10.1117/12.2588969","DOIUrl":null,"url":null,"abstract":"Screening and diagnosing of the melanoma are crucial for the early diagnosis. As the deterioration of melanoma, it can be easily separated from the other materials based on the spectral features and spatial features. With the image of microscopic hyperspectral, this paper applies spectral math to preprocess the image firstly and the utilizes three traditional supervised classifications-maximum likelihood classification (MLC), convolution neural networks (CNN) and support vector machine (SVM) to make the segmentation after preprocess. Finally, we evaluate the accuracy of results generated by three to get the best segmentation method among them. This experiment shows practical value in pathological diagnosis.","PeriodicalId":415097,"journal":{"name":"International Conference on Signal Processing Systems","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2588969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Screening and diagnosing of the melanoma are crucial for the early diagnosis. As the deterioration of melanoma, it can be easily separated from the other materials based on the spectral features and spatial features. With the image of microscopic hyperspectral, this paper applies spectral math to preprocess the image firstly and the utilizes three traditional supervised classifications-maximum likelihood classification (MLC), convolution neural networks (CNN) and support vector machine (SVM) to make the segmentation after preprocess. Finally, we evaluate the accuracy of results generated by three to get the best segmentation method among them. This experiment shows practical value in pathological diagnosis.
基于显微高光谱成像技术的皮肤黑色素瘤识别
黑色素瘤的筛查和诊断对于早期诊断至关重要。作为黑色素瘤的恶化,根据光谱特征和空间特征可以很容易地与其他材料分离。本文针对微观高光谱图像,首先应用光谱数学对图像进行预处理,然后利用最大似然分类(MLC)、卷积神经网络(CNN)和支持向量机(SVM)三种传统的监督分类方法对图像进行预处理后的分割。最后,对三种方法生成的分割结果进行精度评价,从中选出最佳的分割方法。本实验对病理诊断具有实用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信