I2R-NUS submission to oriental language recognition AP16-OL7 challenge

Hanwu Sun, Kong-Aik Lee, Trung Hieu Nguyen, B. Ma, Haizhou Li
{"title":"I2R-NUS submission to oriental language recognition AP16-OL7 challenge","authors":"Hanwu Sun, Kong-Aik Lee, Trung Hieu Nguyen, B. Ma, Haizhou Li","doi":"10.1109/APSIPA.2017.8282274","DOIUrl":null,"url":null,"abstract":"This paper presents a detailed description and analysis of a joint submission of Institute for Infocomm Research (I2R) and National University of Singapore (NUS), which is the top performing system to AP16-OL7 Challenge. The submitted system was a fusion of two sub-systems: the i-vector system and GMM-SVM system, both based on state-of-the-art bottleneck feature. Central to our work presented in this paper is a language-dependent UBM GMM-SVM system and traditional i- vector polynomials expansion with SVM classifier. The FoCal toolkit was used for sub-system fusion. Experimental results show that the proposed approach achieves significant improvement over the baseline system on the development and evaluation sets. Our final submission achieve EER 0.440%, 1.09% and identification rates 98.9%, 97.6% on the development set and evaluation set, respectively.","PeriodicalId":142091,"journal":{"name":"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2017.8282274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a detailed description and analysis of a joint submission of Institute for Infocomm Research (I2R) and National University of Singapore (NUS), which is the top performing system to AP16-OL7 Challenge. The submitted system was a fusion of two sub-systems: the i-vector system and GMM-SVM system, both based on state-of-the-art bottleneck feature. Central to our work presented in this paper is a language-dependent UBM GMM-SVM system and traditional i- vector polynomials expansion with SVM classifier. The FoCal toolkit was used for sub-system fusion. Experimental results show that the proposed approach achieves significant improvement over the baseline system on the development and evaluation sets. Our final submission achieve EER 0.440%, 1.09% and identification rates 98.9%, 97.6% on the development set and evaluation set, respectively.
I2R-NUS提交的东方语言识别AP16-OL7挑战
本文详细描述和分析了由信息通信研究所(I2R)和新加坡国立大学(NUS)联合提交的AP16-OL7挑战赛中表现最好的系统。所提交的系统是两个子系统的融合:i-vector系统和GMM-SVM系统,都是基于最先进的瓶颈特征。本文的核心工作是基于语言的UBM GMM-SVM系统和基于支持向量机分类器的i向量多项式展开。FoCal工具箱用于子系统融合。实验结果表明,该方法在开发集和评估集上都比基线系统有了显著的改进。我们最终提交的开发集和评价集的识别率分别达到了0.40%、1.09%和98.9%、97.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信