Research on Domain Variable Identification among Different Data Cubes

Yanling Yang, Jinsongdi Yu, R. Tong
{"title":"Research on Domain Variable Identification among Different Data Cubes","authors":"Yanling Yang, Jinsongdi Yu, R. Tong","doi":"10.1109/ieeeconf54055.2021.9687644","DOIUrl":null,"url":null,"abstract":"Large spatio-temporal Earth observation (EO) data are organized as multidimensional data cubes, which is a new paradigm for users to interact with EO data. For the multidimensional data cubes, geospatial dimensions, denoting by latitude and longitude, are indispensable. However, time series, climate and ocean data, etc. also require time axes and non-spatio-temporal axes in the n-dimensional structure. Therefore, at this level, a major challenge in data cubes interoperability concerns the harmonization of domain variables among different data cube implementations. Harmonization of data cubes from data with significantly different spatio-temporal reference systems always requires domain variable knowledge base. We propose to identify domain variables via a standardized resolver approach. In this way, cubes interoperability of different domain variables can be referred to and interoperated across multidisciplinary applications.","PeriodicalId":171165,"journal":{"name":"2021 28th International Conference on Geoinformatics","volume":"173 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 28th International Conference on Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ieeeconf54055.2021.9687644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Large spatio-temporal Earth observation (EO) data are organized as multidimensional data cubes, which is a new paradigm for users to interact with EO data. For the multidimensional data cubes, geospatial dimensions, denoting by latitude and longitude, are indispensable. However, time series, climate and ocean data, etc. also require time axes and non-spatio-temporal axes in the n-dimensional structure. Therefore, at this level, a major challenge in data cubes interoperability concerns the harmonization of domain variables among different data cube implementations. Harmonization of data cubes from data with significantly different spatio-temporal reference systems always requires domain variable knowledge base. We propose to identify domain variables via a standardized resolver approach. In this way, cubes interoperability of different domain variables can be referred to and interoperated across multidisciplinary applications.
不同数据立方体间域变量识别研究
将大型时空对地观测数据组织成多维数据立方体,为用户与对地观测数据交互提供了一种新的范式。对于多维数据集,地理空间维度(以纬度和经度表示)是必不可少的。而时间序列、气候、海洋等数据也需要n维结构中的时间轴和非时空轴。因此,在这个级别上,数据多维数据集互操作性中的一个主要挑战涉及不同数据多维数据集实现之间域变量的协调。从具有明显不同时空参考系统的数据中协调数据立方体总是需要领域变量知识库。我们建议通过标准化的解析器方法来识别域变量。通过这种方式,可以引用不同领域变量的多维数据集互操作性,并跨多学科应用程序进行互操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信