{"title":"Two-Stream Non-Uniform Concentration Reasoning Network for Single Image Air Pollution Estimation","authors":"Huilin Chen, Wenming Yang, Q. Liao","doi":"10.1109/ICIP46576.2022.9897665","DOIUrl":null,"url":null,"abstract":"With the increasing availability of portable cameras and smart phones, directly estimating PM2.5 based on digital photography shows advantages in efficiency and economic costs. In this paper, a novel Two-stream Non-uniform Concentration Reasoning Network (TNCR-Net) is proposed for single image PM2.5 concentration estimation. Motivated by locally non-uniform particle pollution concentration distribution in images, we adopt patch-based scheme and adaptive weighted average mechanism to obtain patch-wise concentration and relative weight based on spatially varying perceptual relevance of local particle pollution concentration. Then aggregate patch-wise concentrations according to relative weights. To learn more effective feature from particular pollution image, we use a two-stream network structure with the dark channel map as the input of one stream. Besides, we employ attention-based feature fusion method to flexibly aggregate the feature maps of the two streams. Experiments on real-world dataset indicate that our TNCR-Net outperforms other state-of-the-art methods with fewer parameters.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"21 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing availability of portable cameras and smart phones, directly estimating PM2.5 based on digital photography shows advantages in efficiency and economic costs. In this paper, a novel Two-stream Non-uniform Concentration Reasoning Network (TNCR-Net) is proposed for single image PM2.5 concentration estimation. Motivated by locally non-uniform particle pollution concentration distribution in images, we adopt patch-based scheme and adaptive weighted average mechanism to obtain patch-wise concentration and relative weight based on spatially varying perceptual relevance of local particle pollution concentration. Then aggregate patch-wise concentrations according to relative weights. To learn more effective feature from particular pollution image, we use a two-stream network structure with the dark channel map as the input of one stream. Besides, we employ attention-based feature fusion method to flexibly aggregate the feature maps of the two streams. Experiments on real-world dataset indicate that our TNCR-Net outperforms other state-of-the-art methods with fewer parameters.