Evaluation of a Model-driven Knowledge Storage and Retrieval IDE for Interactive HRI Systems

N. Köster, S. Wrede, P. Cimiano
{"title":"Evaluation of a Model-driven Knowledge Storage and Retrieval IDE for Interactive HRI Systems","authors":"N. Köster, S. Wrede, P. Cimiano","doi":"10.1142/S1793351X19400099","DOIUrl":null,"url":null,"abstract":"Efficient storage and querying of long-term human–robot interaction data requires application developers to have an in-depth understanding of the involved domains. Creating syntactically and semantically correct queries in the development process is an error prone task which can immensely impact the interaction experience of humans with robots and artificial agents. To address this issue, we present and evaluate a model-driven software development approach to create a long-term storage system to be used in highly interactive HRI scenarios. We created multiple domain-specific languages that allow us to model the domain and seamlessly embed its concepts into a query language. Along with corresponding model-to-model and model-to-text transformations, we generate a fully integrated workbench facilitating data storage and retrieval. It supports developers in the query design process and allows in-tool query execution without the need to have prior in-depth knowledge of the domain. We evaluated our work in an extensive user study and can show that the generated tool yields multiple advantages compared to the usual query design approach.","PeriodicalId":217956,"journal":{"name":"Int. J. Semantic Comput.","volume":"55 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Semantic Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793351X19400099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Efficient storage and querying of long-term human–robot interaction data requires application developers to have an in-depth understanding of the involved domains. Creating syntactically and semantically correct queries in the development process is an error prone task which can immensely impact the interaction experience of humans with robots and artificial agents. To address this issue, we present and evaluate a model-driven software development approach to create a long-term storage system to be used in highly interactive HRI scenarios. We created multiple domain-specific languages that allow us to model the domain and seamlessly embed its concepts into a query language. Along with corresponding model-to-model and model-to-text transformations, we generate a fully integrated workbench facilitating data storage and retrieval. It supports developers in the query design process and allows in-tool query execution without the need to have prior in-depth knowledge of the domain. We evaluated our work in an extensive user study and can show that the generated tool yields multiple advantages compared to the usual query design approach.
交互式HRI系统中模型驱动的知识存储与检索IDE的评价
长期人机交互数据的高效存储和查询要求应用程序开发人员对所涉及的领域有深入的了解。在开发过程中创建语法和语义正确的查询是一项容易出错的任务,它会极大地影响人类与机器人和人工代理的交互体验。为了解决这个问题,我们提出并评估了一种模型驱动的软件开发方法,以创建一个用于高度交互式HRI场景的长期存储系统。我们创建了多种特定于领域的语言,这些语言允许我们对领域进行建模,并将其概念无缝地嵌入到查询语言中。与相应的模型到模型和模型到文本转换一起,我们生成了一个完全集成的工作台,便于数据存储和检索。它在查询设计过程中为开发人员提供支持,并允许在工具内执行查询,而无需事先对该领域有深入的了解。我们在广泛的用户研究中评估了我们的工作,并且可以显示与通常的查询设计方法相比,生成的工具具有多种优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信