First-order differentiability properties of a class of equality constrained optimal value functions with applications

K. Sturm
{"title":"First-order differentiability properties of a class of equality constrained optimal value functions with applications","authors":"K. Sturm","doi":"10.46298/jnsao-2020-6034","DOIUrl":null,"url":null,"abstract":"In this paper we study the right differentiability of a parametric infimum function over a parametric set defined by equality constraints. We present a new theorem with sufficient conditions for the right differentiability with respect to the parameter. Target applications are nonconvex objective functions with equality constraints arising in optimal control and shape optimisation. The theorem makes use of the averaged adjoint approach in conjunction with the variational approach of Kunisch, Ito and Peichl. We provide two examples of our abstract result: (a) a shape optimisation problem involving a semilinear partial differential equation which exhibits infinitely many solutions, (b) a finite dimensional quadratic function subject to a nonlinear equation.","PeriodicalId":250939,"journal":{"name":"Journal of Nonsmooth Analysis and Optimization","volume":"152 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonsmooth Analysis and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/jnsao-2020-6034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we study the right differentiability of a parametric infimum function over a parametric set defined by equality constraints. We present a new theorem with sufficient conditions for the right differentiability with respect to the parameter. Target applications are nonconvex objective functions with equality constraints arising in optimal control and shape optimisation. The theorem makes use of the averaged adjoint approach in conjunction with the variational approach of Kunisch, Ito and Peichl. We provide two examples of our abstract result: (a) a shape optimisation problem involving a semilinear partial differential equation which exhibits infinitely many solutions, (b) a finite dimensional quadratic function subject to a nonlinear equation.
一类等式约束的最优值函数的一阶可微性及其应用
本文研究了由等式约束定义的参数集上的参数极小函数的右可微性。给出了一个关于参数右可微的新定理,并给出了该定理的充分条件。目标应用是在最优控制和形状优化中产生的具有相等约束的非凸目标函数。该定理结合Kunisch、Ito和Peichl的变分方法,利用了平均伴随方法。我们提供了两个抽象结果的例子:(a)涉及具有无限多个解的半线性偏微分方程的形状优化问题,(b)受非线性方程约束的有限维二次函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信