{"title":"A Linear Kernel for Finding Square Roots of Almost Planar Graphs","authors":"P. Golovach, D. Kratsch, D. Paulusma, A. Stewart","doi":"10.4230/LIPIcs.SWAT.2016.4","DOIUrl":null,"url":null,"abstract":"A graph H is a square root of a graph G if G can be obtained from H by the addition of edges between any two vertices in H that are of distance 2 from each other. The Square Root problem is that of deciding whether a given graph admits a square root. We consider this problem for planar graphs in the context of the \"distance from triviality\" framework. For an integer k, a planar+kv graph (or k-apex graph) is a graph that can be made planar by the removal of at most k vertices. We prove that a generalization of Square Root, in which some edges are prescribed to be either in or out of any solution, has a kernel of size O(k) for planar+kv graphs, when parameterized by k. Our result is based on a new edge reduction rule which, as we shall also show, has a wider applicability for the Square Root problem.","PeriodicalId":447445,"journal":{"name":"Scandinavian Workshop on Algorithm Theory","volume":"405 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Workshop on Algorithm Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.SWAT.2016.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9
Abstract
A graph H is a square root of a graph G if G can be obtained from H by the addition of edges between any two vertices in H that are of distance 2 from each other. The Square Root problem is that of deciding whether a given graph admits a square root. We consider this problem for planar graphs in the context of the "distance from triviality" framework. For an integer k, a planar+kv graph (or k-apex graph) is a graph that can be made planar by the removal of at most k vertices. We prove that a generalization of Square Root, in which some edges are prescribed to be either in or out of any solution, has a kernel of size O(k) for planar+kv graphs, when parameterized by k. Our result is based on a new edge reduction rule which, as we shall also show, has a wider applicability for the Square Root problem.