Performance Monitoring of High-Speed NRZ Signals Using Machine Learning Techniques

Chun-Chen Yao, Jun-Yuan Zheng, Jau‐Ji Jou, Chun-Liang Yang
{"title":"Performance Monitoring of High-Speed NRZ Signals Using Machine Learning Techniques","authors":"Chun-Chen Yao, Jun-Yuan Zheng, Jau‐Ji Jou, Chun-Liang Yang","doi":"10.1109/ISPACS51563.2021.9650979","DOIUrl":null,"url":null,"abstract":"Advances in high-speed communication network technologies have spurred interest in signal performance monitoring. This study proposed a 25-Gb/s non-return-to-zero (NRZ) signal performance monitoring method using an artificial neural network (ANN), which can estimate the five parameters of Q factor, signal-to-noise ratio, time jitter, rise time, and fall time. Using 5000 data sets and adopting seven neurons in the hidden layer, the mean relative errors of the five estimated parameters are about 5.76% to 11.74%. This parameter extraction technique based on machine learning can apply to real-time optical network performance monitoring for high-speed NRZ signals.","PeriodicalId":359822,"journal":{"name":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"660 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS51563.2021.9650979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Advances in high-speed communication network technologies have spurred interest in signal performance monitoring. This study proposed a 25-Gb/s non-return-to-zero (NRZ) signal performance monitoring method using an artificial neural network (ANN), which can estimate the five parameters of Q factor, signal-to-noise ratio, time jitter, rise time, and fall time. Using 5000 data sets and adopting seven neurons in the hidden layer, the mean relative errors of the five estimated parameters are about 5.76% to 11.74%. This parameter extraction technique based on machine learning can apply to real-time optical network performance monitoring for high-speed NRZ signals.
利用机器学习技术监测高速NRZ信号的性能
高速通信网络技术的进步激发了人们对信号性能监测的兴趣。本研究提出了一种基于人工神经网络(ANN)的25 gb /s非归零(NRZ)信号性能监测方法,该方法可以估计Q因子、信噪比、时间抖动、上升时间和下降时间五个参数。使用5000个数据集,在隐层采用7个神经元,5个估计参数的平均相对误差约为5.76% ~ 11.74%。这种基于机器学习的参数提取技术可以应用于高速NRZ信号的实时光网络性能监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信