A Pipelined Recurrent Fuzzy Neural Filter for the Separation of Lung Sounds

D. Stavrakoudis, P. Mastorocostas, Ioannis B. Theocharis
{"title":"A Pipelined Recurrent Fuzzy Neural Filter for the Separation of Lung Sounds","authors":"D. Stavrakoudis, P. Mastorocostas, Ioannis B. Theocharis","doi":"10.1109/FUZZY.2007.4295339","DOIUrl":null,"url":null,"abstract":"This paper presents a recurrent fuzzy-neural filter that performs the task of separation of lung sounds, obtained from patients with pulmonary pathology. The filter is a pipelined Takagi-Sugeno-Kang recurrent fuzzy network, consisting of a number of modules interconnected in a cascaded form. The participating modules are implemented through recurrent fuzzy neural networks with internal dynamics. The structure of the modules is evolved sequentially from input-output data. Extensive experimental results, regarding the lung sound category of crackles, are given, and a performance comparison with a series of other fuzzy and neural filters is conducted, underlining the separation capabilities of the proposed filter.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents a recurrent fuzzy-neural filter that performs the task of separation of lung sounds, obtained from patients with pulmonary pathology. The filter is a pipelined Takagi-Sugeno-Kang recurrent fuzzy network, consisting of a number of modules interconnected in a cascaded form. The participating modules are implemented through recurrent fuzzy neural networks with internal dynamics. The structure of the modules is evolved sequentially from input-output data. Extensive experimental results, regarding the lung sound category of crackles, are given, and a performance comparison with a series of other fuzzy and neural filters is conducted, underlining the separation capabilities of the proposed filter.
一种用于肺音分离的流水线递归模糊神经滤波器
本文提出了一种循环模糊神经滤波器,用于分离肺病理患者的肺音。该滤波器是一个流水线式的Takagi-Sugeno-Kang递归模糊网络,由多个模块以级联形式相互连接组成。参与模块通过带有内部动态的递归模糊神经网络实现。模块的结构从输入-输出数据依次演化。给出了大量的实验结果,并与一系列其他模糊和神经滤波器进行了性能比较,强调了该滤波器的分离能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信