Hbase Based Surveillance Video Processing, Storage and Retrieval

Weishan Zhang, Yuanjie Zhang, Liang Xu, Faming Gong
{"title":"Hbase Based Surveillance Video Processing, Storage and Retrieval","authors":"Weishan Zhang, Yuanjie Zhang, Liang Xu, Faming Gong","doi":"10.1109/IIKI.2016.21","DOIUrl":null,"url":null,"abstract":"Due to the rapid data growth of video monitoring, how to efficiently storing and querying massive surveillance videos is challenging, such as performance of querying, and fault tolerance for storage. The emerging cloud computing and big data techniques shed lights to intelligent processing for large-scale video data. This paper proposes a HBase based approach for surveillance video processing, storage, and querying. We adopt a distributed storage architecture, cut videos to many small ones and stored them in HDFS, extract video data through Hadoop preprocessing. In our approach, a number o strategies are used, e.g. pre-building regions, multi-thread and row-key optimization, to write data into HBase cluster in parallel. Evaluations show that our method has good performance.","PeriodicalId":371106,"journal":{"name":"2016 International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IIKI.2016.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Due to the rapid data growth of video monitoring, how to efficiently storing and querying massive surveillance videos is challenging, such as performance of querying, and fault tolerance for storage. The emerging cloud computing and big data techniques shed lights to intelligent processing for large-scale video data. This paper proposes a HBase based approach for surveillance video processing, storage, and querying. We adopt a distributed storage architecture, cut videos to many small ones and stored them in HDFS, extract video data through Hadoop preprocessing. In our approach, a number o strategies are used, e.g. pre-building regions, multi-thread and row-key optimization, to write data into HBase cluster in parallel. Evaluations show that our method has good performance.
基于Hbase的监控视频处理、存储和检索
由于视频监控数据的快速增长,如何高效地存储和查询海量监控视频,对查询性能、存储容错等方面提出了挑战。新兴的云计算和大数据技术为大规模视频数据的智能处理提供了新的思路。本文提出了一种基于HBase的监控视频处理、存储和查询方法。我们采用分布式存储架构,将视频剪辑成许多小视频并存储在HDFS中,通过Hadoop预处理提取视频数据。在我们的方法中,使用了许多策略,例如预构建区域,多线程和行键优化,以并行地将数据写入HBase集群。结果表明,该方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信