Are Fair Learning To Rank Models Really Fair? An Analysis Using Inferred Gender

Alexander Pietrick, Alyssa Romportl, Shailen Smith, O. Olulana, Kathleen Cachel, E. Rundensteiner
{"title":"Are Fair Learning To Rank Models Really Fair? An Analysis Using Inferred Gender","authors":"Alexander Pietrick, Alyssa Romportl, Shailen Smith, O. Olulana, Kathleen Cachel, E. Rundensteiner","doi":"10.1109/URTC56832.2022.10002233","DOIUrl":null,"url":null,"abstract":"Fair Learning To Rank (LTR) frameworks require demographic information; however, that information is often unavailable. Inference algorithms may infer the missing demographic information to supply to the fair LTR model. In this study, we analyze the effect of using a trained fair LTR model with uncertain demographic inferences. We show that inferred data results in varying levels of fairness and utility depending on inference accuracy. Specifically, less accurate inferred data adversely affects the rankings’ fairness, while more accurate inferred data creates fairer rankings. Therefore, we recommend that a careful evaluation of demographic inference algorithms before use is critical.","PeriodicalId":330213,"journal":{"name":"2022 IEEE MIT Undergraduate Research Technology Conference (URTC)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE MIT Undergraduate Research Technology Conference (URTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URTC56832.2022.10002233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fair Learning To Rank (LTR) frameworks require demographic information; however, that information is often unavailable. Inference algorithms may infer the missing demographic information to supply to the fair LTR model. In this study, we analyze the effect of using a trained fair LTR model with uncertain demographic inferences. We show that inferred data results in varying levels of fairness and utility depending on inference accuracy. Specifically, less accurate inferred data adversely affects the rankings’ fairness, while more accurate inferred data creates fairer rankings. Therefore, we recommend that a careful evaluation of demographic inference algorithms before use is critical.
公平学习对模型进行排名真的公平吗?使用推断性别的分析
公平学习排名(LTR)框架需要人口统计信息;然而,这些信息往往是不可获得的。推理算法可以推断出缺失的人口统计信息,以提供给公平的LTR模型。在这项研究中,我们分析了使用具有不确定人口统计推断的训练公平LTR模型的效果。我们表明,根据推断的准确性,推断数据会产生不同程度的公平性和效用。具体来说,不准确的推断数据会对排名的公平性产生不利影响,而更准确的推断数据则会创造更公平的排名。因此,我们建议在使用之前仔细评估人口统计推断算法是至关重要的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信