Text-independent Speaker Identification Using Fisher Discrimination Dictionary Learning Method

Xia Wang, Qian Yin, Ping Guo
{"title":"Text-independent Speaker Identification Using Fisher Discrimination Dictionary Learning Method","authors":"Xia Wang, Qian Yin, Ping Guo","doi":"10.1109/CIS.2012.103","DOIUrl":null,"url":null,"abstract":"In last decades, text-independent speaker recognition is a hot research topic attracted many researchers. In this paper, we proposed to apply the Fisher discrimination dictionary learning method to identify the text-independent speaker recognition. The feature used in classification is the Gaussian Mixture Model super vector. The proposed method is evaluated with public ally available dataset TIMIT. Experimental results show that the proposed method outperforms the Sparse Representation Classifier used for text-independent speaker recognition in both clean and noisy condition.","PeriodicalId":294394,"journal":{"name":"2012 Eighth International Conference on Computational Intelligence and Security","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Eighth International Conference on Computational Intelligence and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2012.103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In last decades, text-independent speaker recognition is a hot research topic attracted many researchers. In this paper, we proposed to apply the Fisher discrimination dictionary learning method to identify the text-independent speaker recognition. The feature used in classification is the Gaussian Mixture Model super vector. The proposed method is evaluated with public ally available dataset TIMIT. Experimental results show that the proposed method outperforms the Sparse Representation Classifier used for text-independent speaker recognition in both clean and noisy condition.
基于Fisher判别词典学习方法的文本独立说话人识别
不依赖文本的说话人识别是近几十年来吸引了众多研究者的研究热点。本文提出将Fisher判别字典学习方法应用于非文本说话人识别。分类中使用的特征是高斯混合模型超级向量。用公开可用的数据集TIMIT对该方法进行了评估。实验结果表明,该方法在清洁和噪声条件下都优于稀疏表示分类器用于文本无关说话人识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信