Real-Time Tracking via Deformable Structure Regression Learning

Xian Yang, Quan Xiao, Shoujue Wang, Peizhong Liu
{"title":"Real-Time Tracking via Deformable Structure Regression Learning","authors":"Xian Yang, Quan Xiao, Shoujue Wang, Peizhong Liu","doi":"10.1109/ICPR.2014.379","DOIUrl":null,"url":null,"abstract":"Visual object tracking is a challenging task because designing an effective and efficient appearance model is difficult. Current online tracking algorithms treat tracking as a classification task and use labeled samples to update appearance model. However, it is not clear to evaluate instance confidence belong to the object. In this paper, we propose a simple and efficient tracking algorithm with a deformable structure appearance. In our method, model updates with continuous labeled samples which are dense sampling. In order to improve the accuracy, we introduce a couple-layer regression model which prevents negative background from impacting on the model learning rather than traditional classification. The proposed DSR tracker runs in real-time and performs favorably against state-of-the-art trackers on various challenging sequences.","PeriodicalId":142159,"journal":{"name":"2014 22nd International Conference on Pattern Recognition","volume":"161 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2014.379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Visual object tracking is a challenging task because designing an effective and efficient appearance model is difficult. Current online tracking algorithms treat tracking as a classification task and use labeled samples to update appearance model. However, it is not clear to evaluate instance confidence belong to the object. In this paper, we propose a simple and efficient tracking algorithm with a deformable structure appearance. In our method, model updates with continuous labeled samples which are dense sampling. In order to improve the accuracy, we introduce a couple-layer regression model which prevents negative background from impacting on the model learning rather than traditional classification. The proposed DSR tracker runs in real-time and performs favorably against state-of-the-art trackers on various challenging sequences.
基于可变形结构回归学习的实时跟踪
视觉目标跟踪是一项具有挑战性的任务,因为设计一个有效和高效的外观模型是困难的。目前的在线跟踪算法将跟踪作为一种分类任务,使用标记样本更新外观模型。但是,不清楚如何评估属于对象的实例置信度。在本文中,我们提出了一种简单有效的具有可变形结构外观的跟踪算法。在我们的方法中,使用连续的标记样本进行模型更新,这是密集采样。为了提高准确率,我们引入了一种防止负面背景影响模型学习的双层回归模型,而不是传统的分类方法。所提出的DSR跟踪器可以实时运行,并且在各种具有挑战性的序列上优于最先进的跟踪器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信