Research on Optimal Interpolation Times of Nonlinear Time-Series Using Metric Entropy and Fractal Interpolation

Zhiye Xia, Lisheng Xu
{"title":"Research on Optimal Interpolation Times of Nonlinear Time-Series Using Metric Entropy and Fractal Interpolation","authors":"Zhiye Xia, Lisheng Xu","doi":"10.1109/IWCFTA.2010.22","DOIUrl":null,"url":null,"abstract":"In the field of geoscience and atmospheric science, raw data should be interpolated by appropriate times due to the temporal and spatial resolution limitation or the length of initial data at the given observation time for the follow-up process. But this type of data have universal and special nonlinear characteristics, such as chaotic and fractal feature, these nonlinear time series are sensitive to initial condition when applied to model, so it means that the optimal approximation by interpolation to the raw data is required, there will be existing an optimal interpolation times to the data but not arbitrary times. In this paper, we propose a new approach by applying fractal interpolation and Metric Entropy to retrieve the optimal interpolation times. it’s found that higher order nonlinear fractal interpolation function can determine the optimal interpolation times for raw data without changing its initial structure and nonlinear characteristics under the constraining of Metric Entropy. This conclusion will be significant and used abroad in information science and physical science and so on.","PeriodicalId":157339,"journal":{"name":"2010 International Workshop on Chaos-Fractal Theories and Applications","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Workshop on Chaos-Fractal Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCFTA.2010.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the field of geoscience and atmospheric science, raw data should be interpolated by appropriate times due to the temporal and spatial resolution limitation or the length of initial data at the given observation time for the follow-up process. But this type of data have universal and special nonlinear characteristics, such as chaotic and fractal feature, these nonlinear time series are sensitive to initial condition when applied to model, so it means that the optimal approximation by interpolation to the raw data is required, there will be existing an optimal interpolation times to the data but not arbitrary times. In this paper, we propose a new approach by applying fractal interpolation and Metric Entropy to retrieve the optimal interpolation times. it’s found that higher order nonlinear fractal interpolation function can determine the optimal interpolation times for raw data without changing its initial structure and nonlinear characteristics under the constraining of Metric Entropy. This conclusion will be significant and used abroad in information science and physical science and so on.
基于度量熵和分形插值的非线性时间序列最优插值次数研究
在地球科学和大气科学领域,由于时空分辨率的限制或给定观测时间内初始数据的长度,原始数据应在适当的时间内进行插值,以供后续过程使用。但这类数据具有普遍和特殊的非线性特征,如混沌和分形特征,这些非线性时间序列在应用于模型时对初始条件很敏感,这就意味着需要对原始数据进行最优逼近,对数据会存在最优插值次数,而不是任意次数。本文提出了一种利用分形插值和度量熵来检索最优插值次数的新方法。在度量熵约束下,高阶非线性分形插值函数可以在不改变原始数据初始结构和非线性特性的情况下确定原始数据的最优插值次数。这一结论在信息科学、物理科学等领域具有重要的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信