Devanagari Ancient Character Recognition using HOG and DCT Features

S. Narang, M. Jindal, Pooja Sharma
{"title":"Devanagari Ancient Character Recognition using HOG and DCT Features","authors":"S. Narang, M. Jindal, Pooja Sharma","doi":"10.1109/PDGC.2018.8745903","DOIUrl":null,"url":null,"abstract":"In the present work, a system for recognition of ancient documents in Devanagari script is presented. Two feature extraction techniques, namely, DCT(Discrete Cosine Transformation) zigzag features and Histogram of oriented gradients are considered for extracting features of Devanagari ancient manuscripts. For recognition, three classification techniques, namely, SVM (Support Vector Machine), decision tree, and Naïve Bayes are used. A database for the experiments is collected from various libraries and museums. Using SVM classifier with RBF kernel, a recognition accuracy of 90.70% with DCT zigzag feature vector of length 100 has been reported. A recognition accuracy of 90.70% with a partitioning strategy of dataset (80% data as training data and the remaining 20% data as testing data) has been achieved.","PeriodicalId":303401,"journal":{"name":"2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC)","volume":" 44","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDGC.2018.8745903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

In the present work, a system for recognition of ancient documents in Devanagari script is presented. Two feature extraction techniques, namely, DCT(Discrete Cosine Transformation) zigzag features and Histogram of oriented gradients are considered for extracting features of Devanagari ancient manuscripts. For recognition, three classification techniques, namely, SVM (Support Vector Machine), decision tree, and Naïve Bayes are used. A database for the experiments is collected from various libraries and museums. Using SVM classifier with RBF kernel, a recognition accuracy of 90.70% with DCT zigzag feature vector of length 100 has been reported. A recognition accuracy of 90.70% with a partitioning strategy of dataset (80% data as training data and the remaining 20% data as testing data) has been achieved.
基于HOG和DCT特征的梵语古汉字识别
本文提出了一种古梵文文献识别系统。采用离散余弦变换(DCT)之字形特征和定向梯度直方图两种特征提取技术提取Devanagari古手稿的特征。在识别方面,使用了支持向量机(SVM)、决策树和Naïve贝叶斯三种分类技术。从各个图书馆和博物馆收集了一个实验数据库。利用RBF核的SVM分类器,对长度为100的DCT之字形特征向量的识别准确率达到90.70%。采用数据集分割策略(80%为训练数据,20%为测试数据),实现了90.70%的识别准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信