Hybrid flexible neural tree for exchange rates forecasting

Lei Zhang, Yuehui Chen, Zhenxiang Chen
{"title":"Hybrid flexible neural tree for exchange rates forecasting","authors":"Lei Zhang, Yuehui Chen, Zhenxiang Chen","doi":"10.1109/ICNC.2012.6234577","DOIUrl":null,"url":null,"abstract":"Exchange rate is an important link of international economic relations. In this paper, a novel method for improving flexible neural tree is proposed to forecasting exchange rate data. The hybrid flexible neural tree with pre-defined instruction sets can be created and evolved. The structure and parameters of hybrid flexible neural tree is optimized using probabilistic incremental program evolution and particle swarm optimization algorithm. Compared with the conventional artificial neural network and flexible neural tree based on gene expression programming, the experimental results indicate that the proposed method is feasible and efficient.","PeriodicalId":404981,"journal":{"name":"2012 8th International Conference on Natural Computation","volume":"56 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Exchange rate is an important link of international economic relations. In this paper, a novel method for improving flexible neural tree is proposed to forecasting exchange rate data. The hybrid flexible neural tree with pre-defined instruction sets can be created and evolved. The structure and parameters of hybrid flexible neural tree is optimized using probabilistic incremental program evolution and particle swarm optimization algorithm. Compared with the conventional artificial neural network and flexible neural tree based on gene expression programming, the experimental results indicate that the proposed method is feasible and efficient.
汇率预测的混合柔性神经树
汇率是国际经济关系中的一个重要环节。本文提出了一种改进柔性神经树的方法来预测汇率数据。具有预定义指令集的混合柔性神经树可以被创建和进化。采用概率增量程序进化和粒子群优化算法对混合柔性神经树的结构和参数进行了优化。与传统的人工神经网络和基于基因表达式编程的柔性神经树进行比较,实验结果表明了该方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信