R. Bayindir, M. Yesilbudak, I. Colak, Ş. Sağiroğlu
{"title":"Excitation Current Forecasting for Reactive Power Compensation in Synchronous Motors: A Data Mining Approach","authors":"R. Bayindir, M. Yesilbudak, I. Colak, Ş. Sağiroğlu","doi":"10.1109/ICMLA.2012.185","DOIUrl":null,"url":null,"abstract":"Excitation current of a synchronous motor has a key role in reactive power compensation. For this purpose, the k-nearest neighbor (k-NN) classifier designed in this paper predicts the excitation current parameter using n-tupled inputs. Load current, power factor, power factor error and the change of excitation current parameters were utilized in n-tupled inputs. Moreover, Euclidean, Manhattan and Minkowski distance metrics were employed for measuring the closeness among the observations and the nearest neighbor number k was assigned as 1, 2, 3, 4 and 5, respectively. The forecasting results have shown that the k-NN classifier which uses power factor and the change of excitation current parameters achieved the best forecasting accuracy for k=1 in Minkowski distance metric. However, the k-NN classifier which uses load current, power factor and power factor error parameters gave the worst forecasting accuracy for k=5 in Minkowski distance metric.","PeriodicalId":157399,"journal":{"name":"2012 11th International Conference on Machine Learning and Applications","volume":"42 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2012.185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Excitation current of a synchronous motor has a key role in reactive power compensation. For this purpose, the k-nearest neighbor (k-NN) classifier designed in this paper predicts the excitation current parameter using n-tupled inputs. Load current, power factor, power factor error and the change of excitation current parameters were utilized in n-tupled inputs. Moreover, Euclidean, Manhattan and Minkowski distance metrics were employed for measuring the closeness among the observations and the nearest neighbor number k was assigned as 1, 2, 3, 4 and 5, respectively. The forecasting results have shown that the k-NN classifier which uses power factor and the change of excitation current parameters achieved the best forecasting accuracy for k=1 in Minkowski distance metric. However, the k-NN classifier which uses load current, power factor and power factor error parameters gave the worst forecasting accuracy for k=5 in Minkowski distance metric.