DTI-DeformIt: Generating ground-truth validation data for diffusion tensor image analysis tasks

Brian G. Booth, G. Hamarneh
{"title":"DTI-DeformIt: Generating ground-truth validation data for diffusion tensor image analysis tasks","authors":"Brian G. Booth, G. Hamarneh","doi":"10.1109/ISBI.2014.6867974","DOIUrl":null,"url":null,"abstract":"We propose DTI-DeformIt: a framework to generate realistic synthetic datasets from a smaller number of, or even one, annotated image(s). Our approach extends the DeformIt technique of Hamarneh et al. [1] to handle the deformations and noise conditions of diffusion tensor images. An implementation of our proposed framework is also provided as a free download. We further show that DTI-DeformIt generates images that, according to eigenvector distance, are no different from real images than other real images, making them suitable for machine learning and validation.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"195 1-6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose DTI-DeformIt: a framework to generate realistic synthetic datasets from a smaller number of, or even one, annotated image(s). Our approach extends the DeformIt technique of Hamarneh et al. [1] to handle the deformations and noise conditions of diffusion tensor images. An implementation of our proposed framework is also provided as a free download. We further show that DTI-DeformIt generates images that, according to eigenvector distance, are no different from real images than other real images, making them suitable for machine learning and validation.
DTI-DeformIt:为扩散张量图像分析任务生成真值验证数据
我们提出DTI-DeformIt:一个框架,从更少的数量,甚至一个,注释图像(s)生成真实的合成数据集。我们的方法扩展了Hamarneh等人[1]的DeformIt技术来处理扩散张量图像的变形和噪声条件。我们提出的框架的实现也作为免费下载提供。我们进一步证明,DTI-DeformIt生成的图像,根据特征向量距离,与其他真实图像没有区别,使其适合机器学习和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信