Nonlinear Control of Large Scale complex Systems using Convex Control Design tools

E. Kosmatopoulos, S. Baldi, K. Aboudolas, D. Rovas, A. Papachristodoulou, P. Ioannou
{"title":"Nonlinear Control of Large Scale complex Systems using Convex Control Design tools","authors":"E. Kosmatopoulos, S. Baldi, K. Aboudolas, D. Rovas, A. Papachristodoulou, P. Ioannou","doi":"10.1109/MED.2011.5983147","DOIUrl":null,"url":null,"abstract":"Based on recent advances on convex design for Large-Scale Control Systems (LSCSs) and robust and efficient LSCS self-tuning/adaptation, a methodology is proposed in this paper which aims at providing an integrated LSCS-design, applicable to large-scale systems of arbitrary scale, heterogeneity and complexity and capable of: 1) Providing stable, efficient and arbitrarily-close-to-optimal LSCS performance; 2) Being able to incorporate a variety of constraints, including limited control constraints as well as constraints that are nonlinear functions of the system controls and outputs (sensor measurements); 3) Being intrinsically self-tunable, able to rapidly and efficiently optimize LSCS performance when short-, medium- or long-time variations affect the large-scale system; 4) Achieving the above, while being scalable and modular. The purpose of the present paper is to provide the main features of the proposed control design methodology.","PeriodicalId":146203,"journal":{"name":"2011 19th Mediterranean Conference on Control & Automation (MED)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 19th Mediterranean Conference on Control & Automation (MED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2011.5983147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Based on recent advances on convex design for Large-Scale Control Systems (LSCSs) and robust and efficient LSCS self-tuning/adaptation, a methodology is proposed in this paper which aims at providing an integrated LSCS-design, applicable to large-scale systems of arbitrary scale, heterogeneity and complexity and capable of: 1) Providing stable, efficient and arbitrarily-close-to-optimal LSCS performance; 2) Being able to incorporate a variety of constraints, including limited control constraints as well as constraints that are nonlinear functions of the system controls and outputs (sensor measurements); 3) Being intrinsically self-tunable, able to rapidly and efficiently optimize LSCS performance when short-, medium- or long-time variations affect the large-scale system; 4) Achieving the above, while being scalable and modular. The purpose of the present paper is to provide the main features of the proposed control design methodology.
基于凸控制设计工具的大型复杂系统非线性控制
基于近年来大型控制系统(LSCS)凸设计和鲁棒高效LSCS自整定/自适应的研究进展,提出了一种适用于任意规模、异构和复杂的大型系统的集成LSCS设计方法,该方法能够:1)提供稳定、高效和任意接近最优的LSCS性能;2)能够纳入各种约束,包括有限控制约束以及系统控制和输出(传感器测量)的非线性函数约束;3)具有内在自调性,能够在短期、中期或长期变化影响大系统时快速有效地优化LSCS性能;4)实现上述目标,同时具有可扩展性和模块化。本文的目的是提供所提出的控制设计方法的主要特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信