A Dataset for N-ary Relation Extraction of Drug Combinations

Aryeh Tiktinsky, Vijay Viswanathan, Danna Niezni, D. Azagury, Y. Shamay, Hillel Taub-Tabib, Tom Hope, Yoav Goldberg
{"title":"A Dataset for N-ary Relation Extraction of Drug Combinations","authors":"Aryeh Tiktinsky, Vijay Viswanathan, Danna Niezni, D. Azagury, Y. Shamay, Hillel Taub-Tabib, Tom Hope, Yoav Goldberg","doi":"10.48550/arXiv.2205.02289","DOIUrl":null,"url":null,"abstract":"Combination therapies have become the standard of care for diseases such as cancer, tuberculosis, malaria and HIV. However, the combinatorial set of available multi-drug treatments creates a challenge in identifying effective combination therapies available in a situation.To assist medical professionals in identifying beneficial drug-combinations, we construct an expert-annotated dataset for extracting information about the efficacy of drug combinations from the scientific literature. Beyond its practical utility, the dataset also presents a unique NLP challenge, as the first relation extraction dataset consisting of variable-length relations. Furthermore, the relations in this dataset predominantly require language understanding beyond the sentence level, adding to the challenge of this task. We provide a promising baseline model and identify clear areas for further improvement. We release our dataset (https://huggingface.co/datasets/allenai/drug-combo-extraction), code (https://github.com/allenai/drug-combo-extraction) and baseline models (https://huggingface.co/allenai/drug-combo-classifier-pubmedbert-dapt) publicly to encourage the NLP community to participate in this task.","PeriodicalId":382084,"journal":{"name":"North American Chapter of the Association for Computational Linguistics","volume":"5 5-6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"North American Chapter of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.02289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Combination therapies have become the standard of care for diseases such as cancer, tuberculosis, malaria and HIV. However, the combinatorial set of available multi-drug treatments creates a challenge in identifying effective combination therapies available in a situation.To assist medical professionals in identifying beneficial drug-combinations, we construct an expert-annotated dataset for extracting information about the efficacy of drug combinations from the scientific literature. Beyond its practical utility, the dataset also presents a unique NLP challenge, as the first relation extraction dataset consisting of variable-length relations. Furthermore, the relations in this dataset predominantly require language understanding beyond the sentence level, adding to the challenge of this task. We provide a promising baseline model and identify clear areas for further improvement. We release our dataset (https://huggingface.co/datasets/allenai/drug-combo-extraction), code (https://github.com/allenai/drug-combo-extraction) and baseline models (https://huggingface.co/allenai/drug-combo-classifier-pubmedbert-dapt) publicly to encourage the NLP community to participate in this task.
药物组合n元关系提取的数据集
联合疗法已成为治疗癌症、结核病、疟疾和艾滋病毒等疾病的标准疗法。然而,现有的多药物治疗组合在确定有效的联合治疗方面带来了挑战。为了帮助医疗专业人员识别有益的药物组合,我们构建了一个专家注释的数据集,用于从科学文献中提取有关药物组合功效的信息。除了它的实际用途,数据集也提出了一个独特的NLP挑战,作为第一个由变长关系组成的关系提取数据集。此外,该数据集中的关系主要需要超越句子级别的语言理解,这增加了该任务的挑战。我们提供了一个有希望的基线模型,并确定了进一步改进的明确领域。我们公开发布我们的数据集(https://huggingface.co/datasets/allenai/drug-combo-extraction)、代码(https://github.com/allenai/drug-combo-extraction)和基线模型(https://huggingface.co/allenai/drug-combo-classifier-pubmedbert-dapt),以鼓励NLP社区参与这项任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信