NoCo: ILP-Based Worst-Case Contention Estimation for Mesh Real-Time Manycores

Jordi Cardona, Carles Hernández, E. Mezzetti, J. Abella, F. Cazorla
{"title":"NoCo: ILP-Based Worst-Case Contention Estimation for Mesh Real-Time Manycores","authors":"Jordi Cardona, Carles Hernández, E. Mezzetti, J. Abella, F. Cazorla","doi":"10.1109/RTSS.2018.00043","DOIUrl":null,"url":null,"abstract":"Manycores are capable of providing the computational demands required by functionally-advanced critical applications in domains such as automotive and avionics. In manycores a network-on-chip (NoC) provides access to shared caches and memories and hence concentrates most of the contention that tasks suffer, with effects on the worst-case contention delay (WCD) of packets and tasks' WCET. While several proposals minimize the impact of individual NoC parameters on WCD, e.g. mapping and routing, there are strong dependences among these NoC parameters. Hence, finding the optimal NoC configurations requires optimizing all parameters simultaneously, which represents a multidimensional optimization problem. In this paper we propose NoCo, a novel approach that combines ILP and stochastic optimization to find NoC configurations in terms of packet routing, application mapping, and arbitration weight allocation. Our results show that NoCo improves other techniques that optimize a subset of NoC parameters.","PeriodicalId":294784,"journal":{"name":"2018 IEEE Real-Time Systems Symposium (RTSS)","volume":"153 10-12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Real-Time Systems Symposium (RTSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS.2018.00043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Manycores are capable of providing the computational demands required by functionally-advanced critical applications in domains such as automotive and avionics. In manycores a network-on-chip (NoC) provides access to shared caches and memories and hence concentrates most of the contention that tasks suffer, with effects on the worst-case contention delay (WCD) of packets and tasks' WCET. While several proposals minimize the impact of individual NoC parameters on WCD, e.g. mapping and routing, there are strong dependences among these NoC parameters. Hence, finding the optimal NoC configurations requires optimizing all parameters simultaneously, which represents a multidimensional optimization problem. In this paper we propose NoCo, a novel approach that combines ILP and stochastic optimization to find NoC configurations in terms of packet routing, application mapping, and arbitration weight allocation. Our results show that NoCo improves other techniques that optimize a subset of NoC parameters.
基于ilp的网格实时多核最坏情况争用估计
多核能够提供汽车和航空电子等领域功能先进的关键应用所需的计算需求。在多核中,片上网络(NoC)提供了对共享缓存和内存的访问,因此集中了任务所遭受的大部分争用,对数据包的最坏情况争用延迟(WCD)和任务的WCET有影响。虽然有几个建议尽量减少单个NoC参数对WCD的影响,例如映射和路由,但这些NoC参数之间存在很强的依赖性。因此,寻找最佳NoC配置需要同时优化所有参数,这是一个多维优化问题。在本文中,我们提出了NoCo,这是一种结合了ILP和随机优化的新方法,可以在分组路由,应用映射和仲裁权重分配方面找到NoC配置。我们的研究结果表明,NoCo改进了其他优化NoC参数子集的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信