{"title":"How does the Geocosmos Control the Viruses in Biosphere: DNA, Ionospheric Microwaves and Water","authors":"Avakyan Sv, Baranova La","doi":"10.26420/austinjinfectdis.2023.1077","DOIUrl":null,"url":null,"abstract":"The goal of the paper was to show that the phenomena observed in the works of L. Montagnier, the Nobel laureate on physiology, 2008, with the behavior of some bacteria and viruses (including the Human Imunodeficiency Virus), may be related to the effect of microwave fluxes primarily of ionospheric origin, to formation of water-containing complexes. A well-known mechanism of associative formation is taken into account, taking into account the high affinity for the proton in water molecules. The approach developed in our recent papers is used within the framework of supramolecular physics of complex molecular structures. Supramolecular physics describes a processes developing outside the molecules (atomic-molecular cores) in whose evolution to the complex forms (clusters, associates) electromagnetic radiation of external origin absorbed by exited Rydberg components of molecular complex takes part. Due to increasing value of orbital momentum of Rydberg electrons the stability of the complex grows because probability for forming a stable neutral cluster becomes higher as the electron more seldom penetrates into the ion core. We use the analogy with well known supramolecular chemistry proposed by J.-M. Lehn, the Nobel laureate on chemistry, 1987. He also discussed a possibility of contribution of cosmic influence both to information exchange in living organism and reaction to the environmental stimuli.","PeriodicalId":346223,"journal":{"name":"Austin Journal of Infectious Diseases","volume":"47 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Austin Journal of Infectious Diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26420/austinjinfectdis.2023.1077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The goal of the paper was to show that the phenomena observed in the works of L. Montagnier, the Nobel laureate on physiology, 2008, with the behavior of some bacteria and viruses (including the Human Imunodeficiency Virus), may be related to the effect of microwave fluxes primarily of ionospheric origin, to formation of water-containing complexes. A well-known mechanism of associative formation is taken into account, taking into account the high affinity for the proton in water molecules. The approach developed in our recent papers is used within the framework of supramolecular physics of complex molecular structures. Supramolecular physics describes a processes developing outside the molecules (atomic-molecular cores) in whose evolution to the complex forms (clusters, associates) electromagnetic radiation of external origin absorbed by exited Rydberg components of molecular complex takes part. Due to increasing value of orbital momentum of Rydberg electrons the stability of the complex grows because probability for forming a stable neutral cluster becomes higher as the electron more seldom penetrates into the ion core. We use the analogy with well known supramolecular chemistry proposed by J.-M. Lehn, the Nobel laureate on chemistry, 1987. He also discussed a possibility of contribution of cosmic influence both to information exchange in living organism and reaction to the environmental stimuli.