{"title":"Intersection Navigation Under Dynamic Constraints Using Deep Reinforcement Learning","authors":"A. Demir, Volkan Sezer","doi":"10.1109/CEIT.2018.8751788","DOIUrl":null,"url":null,"abstract":"In this study, we present a unified motion planner with low- level controller for continuous control of a differential drive mobile robot. Deep reinforcement agent takes 10 dimensional state vector as input and calculates each wheel’s torque value as a 2 dimensional output vector. These torque values are fed into the dynamic model of the robot, and lastly steering commands are gathered. In previous studies, navigation problem solutions that uses deep - RL methods, have not been considered with agent’s own dynamic constraints, but it has been done by only considering kinematic models. This is not reliable enough for real-world scenarios. In this paper, deep-RL based motion planning is performed by considering both kinematic and dynamic constraints. According to the simulations in a dynamic environment, the agent succesfully navigates through the intersection with 99.6% success rate.","PeriodicalId":357613,"journal":{"name":"2018 6th International Conference on Control Engineering & Information Technology (CEIT)","volume":"83 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 6th International Conference on Control Engineering & Information Technology (CEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEIT.2018.8751788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
In this study, we present a unified motion planner with low- level controller for continuous control of a differential drive mobile robot. Deep reinforcement agent takes 10 dimensional state vector as input and calculates each wheel’s torque value as a 2 dimensional output vector. These torque values are fed into the dynamic model of the robot, and lastly steering commands are gathered. In previous studies, navigation problem solutions that uses deep - RL methods, have not been considered with agent’s own dynamic constraints, but it has been done by only considering kinematic models. This is not reliable enough for real-world scenarios. In this paper, deep-RL based motion planning is performed by considering both kinematic and dynamic constraints. According to the simulations in a dynamic environment, the agent succesfully navigates through the intersection with 99.6% success rate.