{"title":"A Novel Visual Analysis Oriented Rate Control Scheme for HEVC","authors":"Qi Zhang, Shanshe Wang, Siwei Ma","doi":"10.1109/VCIP49819.2020.9301817","DOIUrl":null,"url":null,"abstract":"Recent years have witnessed an explosion of machine visual intelligence. While impressive performance on visual analysis has been achieved by powerful Deep-Learning-based models, the texture and feature distortion caused by image and video coding is becoming a challenge in practical situations. In this paper, a new rate control scheme is proposed to improve visual analysis performance on coded video frames. Firstly, a new kind of visual analysis distortion is introduced to build a Rate-Joint-Distortion model. Secondly, the Rate-Joint-Distortion Optimization problem is solved by using Lagrange multiplier method, and the relationship between rate and Lagrange multiplier λ is described by a hyperbolic model. Thirdly, a logarithmic λ − QP model is established to achieve minimum Rate-Joint-Distortion cost for given λs. The experimental results show that the proposed scheme can improve visual analysis performance with stable bits used for coding.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Recent years have witnessed an explosion of machine visual intelligence. While impressive performance on visual analysis has been achieved by powerful Deep-Learning-based models, the texture and feature distortion caused by image and video coding is becoming a challenge in practical situations. In this paper, a new rate control scheme is proposed to improve visual analysis performance on coded video frames. Firstly, a new kind of visual analysis distortion is introduced to build a Rate-Joint-Distortion model. Secondly, the Rate-Joint-Distortion Optimization problem is solved by using Lagrange multiplier method, and the relationship between rate and Lagrange multiplier λ is described by a hyperbolic model. Thirdly, a logarithmic λ − QP model is established to achieve minimum Rate-Joint-Distortion cost for given λs. The experimental results show that the proposed scheme can improve visual analysis performance with stable bits used for coding.