Adaptive nonsymmetrical demodulation based on machine learning to mitigate time-varying impairments

J. J. Granada Torres, A. Chiuchiarelli, V. Thomas, S. Ralph, A. M. Cárdenas Soto, N. Guerrero González
{"title":"Adaptive nonsymmetrical demodulation based on machine learning to mitigate time-varying impairments","authors":"J. J. Granada Torres, A. Chiuchiarelli, V. Thomas, S. Ralph, A. M. Cárdenas Soto, N. Guerrero González","doi":"10.1109/AVFOP.2016.7789906","DOIUrl":null,"url":null,"abstract":"We proposed and experimentally demonstrated a machine learning-based nonsymmetrical demodulation technique for a DSP-enabled receiver, with the aim of enabling time-varying nonlinear mitigation. Experimental results showed that nonsymmetrical demodulation can reduce the SER by up to 0.7 decades, when assuming time frames consisting of 10 k symbols and fiber transmission of 250 km. The proposed technique is transparent to the specific source of nonlinearity, which makes it simple yet robust. This machine learning method may also allow simplification of the standard demodulation blocks in particular the equalizer. Employing short time windows for demodulation further enables inline optical monitoring, which is a valuable diagnostic tool for future terabit optical communication systems.","PeriodicalId":239122,"journal":{"name":"2016 IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference (AVFOP)","volume":"47 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Avionics and Vehicle Fiber-Optics and Photonics Conference (AVFOP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AVFOP.2016.7789906","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We proposed and experimentally demonstrated a machine learning-based nonsymmetrical demodulation technique for a DSP-enabled receiver, with the aim of enabling time-varying nonlinear mitigation. Experimental results showed that nonsymmetrical demodulation can reduce the SER by up to 0.7 decades, when assuming time frames consisting of 10 k symbols and fiber transmission of 250 km. The proposed technique is transparent to the specific source of nonlinearity, which makes it simple yet robust. This machine learning method may also allow simplification of the standard demodulation blocks in particular the equalizer. Employing short time windows for demodulation further enables inline optical monitoring, which is a valuable diagnostic tool for future terabit optical communication systems.
基于机器学习的自适应非对称解调减轻时变损伤
我们提出并实验证明了一种基于机器学习的非对称解调技术,用于支持dsp的接收器,目的是实现时变非线性缓解。实验结果表明,当假设时间帧由10 k个符号组成,光纤传输为250 km时,非对称解调可以将SER降低0.7年。所提出的技术对特定的非线性源是透明的,这使得它简单而又鲁棒。这种机器学习方法还可以简化标准解调块,特别是均衡器。利用短时间窗进行解调进一步实现了在线光学监测,这是未来太比特光通信系统的一种有价值的诊断工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信