Static Palm Sign Gesture Recognition with Leap Motion and Genetic Algorithm

S. Rakesh, György Kovács, Hamam Mokayed, Rajkumar Saini, U. Pal
{"title":"Static Palm Sign Gesture Recognition with Leap Motion and Genetic Algorithm","authors":"S. Rakesh, György Kovács, Hamam Mokayed, Rajkumar Saini, U. Pal","doi":"10.1109/SAIS53221.2021.9508468","DOIUrl":null,"url":null,"abstract":"Sign gesture recognition is the field that models sign gestures in order to facilitate communication with hearing and speech impaired people. Sign gestures are recorded with devices like a video camera or a depth camera. Palm gestures are also recorded with the Leap motion sensor. In this paper, we address palm sign gesture recognition using the Leap motion sensor. We extract geometric features from Leap motion recordings. Next, we encode the Genetic Algorithm (GA) for feature selection. Genetically selected features are fed to different classifiers for gesture recognition. Here we have used Support Vector Machine (SVM), Random Forest (RF), and Naive Bayes (NB) classifiers to have their comparative results. The gesture recognition accuracy of 74.00% is recorded with RF classifier on the Leap motion sign gesture dataset.","PeriodicalId":334078,"journal":{"name":"2021 Swedish Artificial Intelligence Society Workshop (SAIS)","volume":"5 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Swedish Artificial Intelligence Society Workshop (SAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAIS53221.2021.9508468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Sign gesture recognition is the field that models sign gestures in order to facilitate communication with hearing and speech impaired people. Sign gestures are recorded with devices like a video camera or a depth camera. Palm gestures are also recorded with the Leap motion sensor. In this paper, we address palm sign gesture recognition using the Leap motion sensor. We extract geometric features from Leap motion recordings. Next, we encode the Genetic Algorithm (GA) for feature selection. Genetically selected features are fed to different classifiers for gesture recognition. Here we have used Support Vector Machine (SVM), Random Forest (RF), and Naive Bayes (NB) classifiers to have their comparative results. The gesture recognition accuracy of 74.00% is recorded with RF classifier on the Leap motion sign gesture dataset.
基于跳跃运动和遗传算法的静态掌纹手势识别
手势识别是模拟手势以促进与听力和语言障碍人士交流的领域。手势是用摄像机或深度摄像机等设备记录的。手掌的动作也会被Leap运动传感器记录下来。在本文中,我们使用Leap运动传感器来解决手掌手势识别问题。我们从Leap运动记录中提取几何特征。接下来,我们对遗传算法(GA)进行特征选择编码。基因选择的特征被输入到不同的分类器中进行手势识别。在这里,我们使用支持向量机(SVM)、随机森林(RF)和朴素贝叶斯(NB)分类器来比较它们的结果。使用RF分类器在Leap运动手势数据集上记录了74.00%的手势识别准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信