A Selective Nesting Approach for the Sparse Multi-threaded Cholesky Factorization

Valentin Le Fèvre, Tetsuzo Usui, Marc Casas
{"title":"A Selective Nesting Approach for the Sparse Multi-threaded Cholesky Factorization","authors":"Valentin Le Fèvre, Tetsuzo Usui, Marc Casas","doi":"10.1109/ESPM256814.2022.00006","DOIUrl":null,"url":null,"abstract":"Sparse linear algebra routines are fundamental building blocks of a large variety of scientific applications. Direct solvers, which are methods for solving linear systems via the factorization of matrices into products of triangular matrices, are commonly used in many contexts. The Cholesky factorization is the fastest direct method for symmetric and positive definite matrices. This paper presents selective nesting, a method to determine the optimal task granularity for the parallel Cholesky factorization based on the structure of sparse matrices. We propose the Opt-D algorithm, which automatically and dynamically applies selective nesting. Opt-D leverages matrix sparsity to drive complex task-based parallel workloads in the context of direct solvers. We run an extensive evaluation campaign considering a heterogeneous set of 35 sparse matrices and a parallel machine featuring the A64FX processor. Opt-D delivers an average performance speedup of 1.75× with respect to the best state-of-the-art parallel methods to run direct solvers.","PeriodicalId":340754,"journal":{"name":"2022 IEEE/ACM 7th International Workshop on Extreme Scale Programming Models and Middleware (ESPM2)","volume":"25 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 7th International Workshop on Extreme Scale Programming Models and Middleware (ESPM2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESPM256814.2022.00006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sparse linear algebra routines are fundamental building blocks of a large variety of scientific applications. Direct solvers, which are methods for solving linear systems via the factorization of matrices into products of triangular matrices, are commonly used in many contexts. The Cholesky factorization is the fastest direct method for symmetric and positive definite matrices. This paper presents selective nesting, a method to determine the optimal task granularity for the parallel Cholesky factorization based on the structure of sparse matrices. We propose the Opt-D algorithm, which automatically and dynamically applies selective nesting. Opt-D leverages matrix sparsity to drive complex task-based parallel workloads in the context of direct solvers. We run an extensive evaluation campaign considering a heterogeneous set of 35 sparse matrices and a parallel machine featuring the A64FX processor. Opt-D delivers an average performance speedup of 1.75× with respect to the best state-of-the-art parallel methods to run direct solvers.
稀疏多线程Cholesky分解的选择性嵌套方法
稀疏线性代数例程是各种科学应用的基本组成部分。直接求解法是一种通过将矩阵分解成三角矩阵的乘积来求解线性系统的方法,在很多情况下都很常用。Cholesky分解是求解对称正定矩阵最快的直接方法。本文提出了一种基于稀疏矩阵结构确定并行Cholesky分解最优任务粒度的方法——选择性嵌套。我们提出了Opt-D算法,该算法自动动态地应用选择性嵌套。Opt-D利用矩阵稀疏性在直接求解器的上下文中驱动基于任务的复杂并行工作负载。我们进行了广泛的评估活动,考虑到35个稀疏矩阵的异构集和具有A64FX处理器的并行机器。相对于运行直接求解器的最先进的并行方法,Opt-D提供了1.75倍的平均性能加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信