{"title":"Cognition-aware Knowledge Graph Reasoning for Explainable Recommendation","authors":"Qin Bing, Qiannan Zhu, Zhicheng Dou","doi":"10.1145/3539597.3570391","DOIUrl":null,"url":null,"abstract":"Knowledge graphs (KGs) have been widely used in recommendation systems to improve recommendation accuracy and interpretability effectively. Recent research usually endows KG reasoning to find the multi-hop user-item connection paths for explaining why an item is recommended. The existing path-finding process is well designed by logic-driven inference algorithms, while there exists a gap between how algorithms and users perceive the reasoning process. Factually, human thinking is a natural reasoning process that can provide more proper and convincing explanations of why particular decisions are made. Motivated by the Dual Process Theory in cognitive science, we propose a cognition-aware KG reasoning model CogER for Explainable Recommendation, which imitates the human cognition process and designs two modules, i.e., System~1 (making intuitive judgment) and System~2 (conducting explicit reasoning), to generate the actual decision-making process. At each step during the cognition-aware reasoning process, System~1 generates an intuitive estimation of the next-step entity based on the user's historical behavior, and System~2 conducts explicit reasoning and selects the most promising knowledge entities. These two modules work iteratively and are mutually complementary, enabling our model to yield high-quality recommendations and proper reasoning paths. Experiments on three real-world datasets show that our model achieves better recommendation results with explanations compared with previous methods.","PeriodicalId":227804,"journal":{"name":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","volume":"19 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539597.3570391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Knowledge graphs (KGs) have been widely used in recommendation systems to improve recommendation accuracy and interpretability effectively. Recent research usually endows KG reasoning to find the multi-hop user-item connection paths for explaining why an item is recommended. The existing path-finding process is well designed by logic-driven inference algorithms, while there exists a gap between how algorithms and users perceive the reasoning process. Factually, human thinking is a natural reasoning process that can provide more proper and convincing explanations of why particular decisions are made. Motivated by the Dual Process Theory in cognitive science, we propose a cognition-aware KG reasoning model CogER for Explainable Recommendation, which imitates the human cognition process and designs two modules, i.e., System~1 (making intuitive judgment) and System~2 (conducting explicit reasoning), to generate the actual decision-making process. At each step during the cognition-aware reasoning process, System~1 generates an intuitive estimation of the next-step entity based on the user's historical behavior, and System~2 conducts explicit reasoning and selects the most promising knowledge entities. These two modules work iteratively and are mutually complementary, enabling our model to yield high-quality recommendations and proper reasoning paths. Experiments on three real-world datasets show that our model achieves better recommendation results with explanations compared with previous methods.