{"title":"Fast beam shape computation and wave propagation via the Radon transform","authors":"T. Pitts, J. Greenleaf","doi":"10.1109/ULTSYM.1999.849221","DOIUrl":null,"url":null,"abstract":"An M-dimensional (M/spl ges/2) linear shift-invariant operator equation may be reduced to a set of decoupled (M-1)-dimensional equations via the Radon transform. This decoupling allows the solution of each reduced equation separately on different processors in parallel. The solution to the full M-dimensional equation is then recovered via an inverse Radon transform. This solution method is particularly well suited to computation of beam shape and wave propagation in a homogeneous medium. For beam shape computation, Huygens' integration over a two-dimensional aperture is reduced to a set of one-dimensional integrations (the number of one-dimensional integrations is determined via Shannon sampling theory from the highest angular harmonic present in the aperture distribution). The method is applied to computation of a wide bandwidth pulse distribution from a semi-circular aperture with a center frequency of 2.25 MHz. The results are compared with the full two-dimensional surface integration. Discussion of the increase in computational speed and sampling considerations affecting the accuracy of the distributed one-dimensional computations are presented.","PeriodicalId":339424,"journal":{"name":"1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027)","volume":"12 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.1999.849221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An M-dimensional (M/spl ges/2) linear shift-invariant operator equation may be reduced to a set of decoupled (M-1)-dimensional equations via the Radon transform. This decoupling allows the solution of each reduced equation separately on different processors in parallel. The solution to the full M-dimensional equation is then recovered via an inverse Radon transform. This solution method is particularly well suited to computation of beam shape and wave propagation in a homogeneous medium. For beam shape computation, Huygens' integration over a two-dimensional aperture is reduced to a set of one-dimensional integrations (the number of one-dimensional integrations is determined via Shannon sampling theory from the highest angular harmonic present in the aperture distribution). The method is applied to computation of a wide bandwidth pulse distribution from a semi-circular aperture with a center frequency of 2.25 MHz. The results are compared with the full two-dimensional surface integration. Discussion of the increase in computational speed and sampling considerations affecting the accuracy of the distributed one-dimensional computations are presented.