Research on signal de-noising technique for MEMS gyro

G. Yuan, Haibo Liang, K. He, Yanjun Xie
{"title":"Research on signal de-noising technique for MEMS gyro","authors":"G. Yuan, Haibo Liang, K. He, Yanjun Xie","doi":"10.1109/ISSCAA.2010.5633603","DOIUrl":null,"url":null,"abstract":"To effectively wipe out random drift and extract valid signal of MEMS gyro, the methods of adaptive Kalman filtering and wavelet analysis are investigated. For the first method, the autoregressive moving average (ARMA) model of random drift is established, which is essential to the adaptive Kalman filter. For the second one, the wavelet basis, decomposition level, and threshold-choosing principle are determined. Then the de-noising test is implemented by using real signal of MEMS gyro, and both methods are of good effectiveness. The contrast analysis between both methods indicates that the adaptive Kalman filtering approach is more suitable for the real-time de-noising of MEMS gyro signal.","PeriodicalId":324652,"journal":{"name":"2010 3rd International Symposium on Systems and Control in Aeronautics and Astronautics","volume":"23 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Symposium on Systems and Control in Aeronautics and Astronautics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCAA.2010.5633603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

To effectively wipe out random drift and extract valid signal of MEMS gyro, the methods of adaptive Kalman filtering and wavelet analysis are investigated. For the first method, the autoregressive moving average (ARMA) model of random drift is established, which is essential to the adaptive Kalman filter. For the second one, the wavelet basis, decomposition level, and threshold-choosing principle are determined. Then the de-noising test is implemented by using real signal of MEMS gyro, and both methods are of good effectiveness. The contrast analysis between both methods indicates that the adaptive Kalman filtering approach is more suitable for the real-time de-noising of MEMS gyro signal.
MEMS陀螺信号去噪技术研究
为了有效消除MEMS陀螺的随机漂移,提取有效信号,研究了自适应卡尔曼滤波和小波分析方法。对于第一种方法,建立随机漂移的自回归移动平均(ARMA)模型,该模型是自适应卡尔曼滤波的关键。第二种方法确定了小波基、分解层次和阈值选取原则。然后利用MEMS陀螺的真实信号进行了降噪测试,两种方法都取得了良好的效果。两种方法的对比分析表明,自适应卡尔曼滤波方法更适合于MEMS陀螺信号的实时降噪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信