Research on Scatter Imaging Method for Electromagnetic Field Inverse Problem Based on Sparse Constraints

Siying Wu, Huilin Zhou
{"title":"Research on Scatter Imaging Method for Electromagnetic Field Inverse Problem Based on Sparse Constraints","authors":"Siying Wu, Huilin Zhou","doi":"10.1109/ICCCS49078.2020.9118508","DOIUrl":null,"url":null,"abstract":"Since the dimension of the measured scattering field is usually much smaller than the dimension of the unknown parameter, this makes the electromagnetic field integral equation ill-conditioned, and the solution of the equation can be obtained using sparse constraint regularization. For this reason, this paper introduced a nonlinear electromagnetic field inverse scattering imaging algorithm under sparse domain, namely: sparse constraints subspace optimization method (SP-SOM) algorithm, the algorithm is used to reconstruct the spatial distribution information of electrical performance parameters of multi-media targets. To use the inexact Newton method, it can be handled that the scattered field equations is reconstructed using the SP-SOM algorithm. The simulation results show that SP-SOM algorithm can effectively reconstruct the spatial distribution information of electrical performance parameters.","PeriodicalId":105556,"journal":{"name":"2020 5th International Conference on Computer and Communication Systems (ICCCS)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 5th International Conference on Computer and Communication Systems (ICCCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCS49078.2020.9118508","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Since the dimension of the measured scattering field is usually much smaller than the dimension of the unknown parameter, this makes the electromagnetic field integral equation ill-conditioned, and the solution of the equation can be obtained using sparse constraint regularization. For this reason, this paper introduced a nonlinear electromagnetic field inverse scattering imaging algorithm under sparse domain, namely: sparse constraints subspace optimization method (SP-SOM) algorithm, the algorithm is used to reconstruct the spatial distribution information of electrical performance parameters of multi-media targets. To use the inexact Newton method, it can be handled that the scattered field equations is reconstructed using the SP-SOM algorithm. The simulation results show that SP-SOM algorithm can effectively reconstruct the spatial distribution information of electrical performance parameters.
基于稀疏约束的电磁场反问题散射成像方法研究
由于被测散射场的维数通常远小于未知参数的维数,这使得电磁场积分方程是病态的,可以使用稀疏约束正则化方法得到方程的解。为此,本文引入了一种稀疏域下的非线性电磁场逆散射成像算法,即:稀疏约束子空间优化法(SP-SOM)算法,该算法用于重建多媒体目标电性能参数的空间分布信息。采用不精确牛顿法,可以采用SP-SOM算法对散射场方程进行重构。仿真结果表明,SP-SOM算法可以有效地重构电性能参数的空间分布信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信