Robust Commuter Movement Inference from Connected Mobile Devices

Baoyang Song, Hasan A. Poonawala, L. Wynter, Sebastien Blandin
{"title":"Robust Commuter Movement Inference from Connected Mobile Devices","authors":"Baoyang Song, Hasan A. Poonawala, L. Wynter, Sebastien Blandin","doi":"10.1109/ICDMW.2018.00099","DOIUrl":null,"url":null,"abstract":"The preponderance of connected devices provides unprecedented opportunities for fine-grained monitoring of the public infrastructure. However while classical models expect high quality application-specific data streams, the promise of the Internet of Things (IoT) is that of an abundance of disparate and noisy datasets from connected devices. In this context, we consider the problem of estimation of the level of service of a city-wide public transport network. We first propose a robust unsupervised model for train movement inference from wifi traces, via the application of robust clustering methods to a one dimensional spatio-temporal setting. We then explore the extent to which the demand-supply gap can be estimated from connected devices. We propose a classification model of real-time commuter patterns, including both a batch training phase and an online learning component. We describe our deployment architecture and assess our system accuracy on a large-scale anonymized dataset comprising more than 10 billion records.","PeriodicalId":259600,"journal":{"name":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","volume":"8 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Data Mining Workshops (ICDMW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDMW.2018.00099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The preponderance of connected devices provides unprecedented opportunities for fine-grained monitoring of the public infrastructure. However while classical models expect high quality application-specific data streams, the promise of the Internet of Things (IoT) is that of an abundance of disparate and noisy datasets from connected devices. In this context, we consider the problem of estimation of the level of service of a city-wide public transport network. We first propose a robust unsupervised model for train movement inference from wifi traces, via the application of robust clustering methods to a one dimensional spatio-temporal setting. We then explore the extent to which the demand-supply gap can be estimated from connected devices. We propose a classification model of real-time commuter patterns, including both a batch training phase and an online learning component. We describe our deployment architecture and assess our system accuracy on a large-scale anonymized dataset comprising more than 10 billion records.
基于连接移动设备的稳健通勤运动推断
连接设备的优势为公共基础设施的细粒度监控提供了前所未有的机会。然而,虽然经典模型期望高质量的特定于应用程序的数据流,但物联网(IoT)的承诺是来自连接设备的大量不同和嘈杂的数据集。在这种情况下,我们考虑的问题估计的服务水平的城市范围内的公共交通网络。我们首先提出了一个鲁棒无监督模型,通过将鲁棒聚类方法应用于一维时空设置,从wifi轨迹推断列车运动。然后,我们探讨了可以从连接设备估计需求供应缺口的程度。我们提出了一个实时通勤模式的分类模型,包括批量训练阶段和在线学习组件。我们描述了我们的部署架构,并在包含超过100亿条记录的大规模匿名数据集上评估了我们的系统准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信