{"title":"Implementation approaches for 512-tap 60 GSa/s chromatic dispersion FIR filters","authors":"A. Kovalev, O. Gustafsson, M. Garrido","doi":"10.1109/ACSSC.2017.8335667","DOIUrl":null,"url":null,"abstract":"In optical communication the non-ideal properties of the fibers lead to pulse widening from chromatic dispersion. One way to compensate for this is through digital signal processing. In this work, two architectures for compensation are compared. Both are designed for 60 GSa/s and 512 filter taps and implemented in the frequency domain using FFTs. It is shown that the high-speed requirements introduce constraints on possible architectural choices. Furthermore, the theoretical multiplication complexity estimates are not good predictors for the energy consumption. The results show that the implementation with 10% more multiplications per sample has half the power consumption and one third of the area consumption. The best architecture for this specification results in a power consumption of 3.12 W in a 65 nm technology, corresponding to an energy per complex filter tap of 0.10 mW/GHz.","PeriodicalId":296208,"journal":{"name":"2017 51st Asilomar Conference on Signals, Systems, and Computers","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 51st Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2017.8335667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
In optical communication the non-ideal properties of the fibers lead to pulse widening from chromatic dispersion. One way to compensate for this is through digital signal processing. In this work, two architectures for compensation are compared. Both are designed for 60 GSa/s and 512 filter taps and implemented in the frequency domain using FFTs. It is shown that the high-speed requirements introduce constraints on possible architectural choices. Furthermore, the theoretical multiplication complexity estimates are not good predictors for the energy consumption. The results show that the implementation with 10% more multiplications per sample has half the power consumption and one third of the area consumption. The best architecture for this specification results in a power consumption of 3.12 W in a 65 nm technology, corresponding to an energy per complex filter tap of 0.10 mW/GHz.