Learning Texture Features from GLCM for Classification of Brain Tumor MRI Images using Random Forest Classifier

A. Aggarwal
{"title":"Learning Texture Features from GLCM for Classification of Brain Tumor MRI Images using Random Forest Classifier","authors":"A. Aggarwal","doi":"10.37394/232014.2022.18.8","DOIUrl":null,"url":null,"abstract":"In computer vision, image feature extraction methods are used to extract features so that the features are learnt for classification tasks. In biomedical images, the choice of a particular feature extractor from a diverse range of feature extractors is not only subjective but also it is time consuming to choose the optimum parameters for a particular feature extraction algorithm. In this paper, the focus is on the Grey-level co-occurrence matrix (GLCM) feature extractor for classification of brain tumor MRI images using random forest classifier. A dataset of brain MRI images (245 images) consisting of two classes viz. images with tumor (154 images) and images without tumor (91 images) has been used to assess the performance of GLCM features on random forest classifier in terms of accuracy, true positive rate, true negative rate, false positive rate, false negative rate derived from the confusion matrix. The results show that by using optimum parameters, the GLCM feature extracts significant texture component in brain MRI images for promising accuracy and other performance metrics.","PeriodicalId":305800,"journal":{"name":"WSEAS TRANSACTIONS ON SIGNAL PROCESSING","volume":"82 3-4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WSEAS TRANSACTIONS ON SIGNAL PROCESSING","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37394/232014.2022.18.8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

In computer vision, image feature extraction methods are used to extract features so that the features are learnt for classification tasks. In biomedical images, the choice of a particular feature extractor from a diverse range of feature extractors is not only subjective but also it is time consuming to choose the optimum parameters for a particular feature extraction algorithm. In this paper, the focus is on the Grey-level co-occurrence matrix (GLCM) feature extractor for classification of brain tumor MRI images using random forest classifier. A dataset of brain MRI images (245 images) consisting of two classes viz. images with tumor (154 images) and images without tumor (91 images) has been used to assess the performance of GLCM features on random forest classifier in terms of accuracy, true positive rate, true negative rate, false positive rate, false negative rate derived from the confusion matrix. The results show that by using optimum parameters, the GLCM feature extracts significant texture component in brain MRI images for promising accuracy and other performance metrics.
从随机森林分类器中学习GLCM纹理特征用于脑肿瘤MRI图像分类
在计算机视觉中,使用图像特征提取方法提取特征,以便学习特征进行分类任务。在生物医学图像中,从众多特征提取器中选择一个特定的特征提取器不仅具有主观性,而且为特定的特征提取算法选择最优参数非常耗时。本文研究了基于随机森林分类器的灰度共生矩阵(GLCM)特征提取器对脑肿瘤MRI图像进行分类。利用245张脑MRI图像数据集(含肿瘤图像154张)和无肿瘤图像91张)对随机森林分类器上GLCM特征在准确率、真阳性率、真阴性率、假阳性率、假阴性率等方面的性能进行了评价。结果表明,通过使用最优参数,GLCM特征提取了脑MRI图像中重要的纹理成分,具有良好的准确性和其他性能指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信