A new Granular Computing approach for sequences representation and classification

A. Rizzi, G. D. Vescovo, L. Livi, F. Mascioli
{"title":"A new Granular Computing approach for sequences representation and classification","authors":"A. Rizzi, G. D. Vescovo, L. Livi, F. Mascioli","doi":"10.1109/IJCNN.2012.6252680","DOIUrl":null,"url":null,"abstract":"In this paper we present an innovative procedure for sequence mining and representation. It can be used as its own in Data Mining problems or as the core of a classification system based on a Granular Computing approach to represent sequences in a suited embedding space. By adopting an inexact sequence matching procedure, the algorithm is able to extract a symbols alphabet of frequent subsequences to be used as prototypes for the embedding stage. Experimental evaluation over both synthetically generated and biological datasets confirms that the modeling system is able to synthesize effective models when facing even complex and noisy problems defined by frequency-based classification rules.","PeriodicalId":287844,"journal":{"name":"The 2012 International Joint Conference on Neural Networks (IJCNN)","volume":"12 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2012 International Joint Conference on Neural Networks (IJCNN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2012.6252680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

In this paper we present an innovative procedure for sequence mining and representation. It can be used as its own in Data Mining problems or as the core of a classification system based on a Granular Computing approach to represent sequences in a suited embedding space. By adopting an inexact sequence matching procedure, the algorithm is able to extract a symbols alphabet of frequent subsequences to be used as prototypes for the embedding stage. Experimental evaluation over both synthetically generated and biological datasets confirms that the modeling system is able to synthesize effective models when facing even complex and noisy problems defined by frequency-based classification rules.
一种新的序列表示和分类的颗粒计算方法
本文提出了一种新的序列挖掘和表示方法。它可以单独用于数据挖掘问题,也可以作为基于颗粒计算方法的分类系统的核心,在合适的嵌入空间中表示序列。该算法采用非精确序列匹配过程,提取出频繁子序列的符号字母表作为嵌入阶段的原型。对合成生成的数据集和生物数据集的实验评估证实,建模系统能够在面对基于频率的分类规则定义的复杂和有噪声的问题时合成有效的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信