Exploiting online social data in ontology learning for event tracking and emergency response

Chung-Hong Lee, Chih-Hong Wu, Hsin-Chang Yang, Wei-Shiang Wen, Chang-Yi Chiang
{"title":"Exploiting online social data in ontology learning for event tracking and emergency response","authors":"Chung-Hong Lee, Chih-Hong Wu, Hsin-Chang Yang, Wei-Shiang Wen, Chang-Yi Chiang","doi":"10.1145/2492517.2500260","DOIUrl":null,"url":null,"abstract":"In this paper, we describe our work on extracting entities from the online social messages regarding emergent events for ontology learning, which can contribute to a solution for quick response of emerging disastrous events. Our work started with the development of a real-time event detection system using a data-cluster slicing approach which combines social data analysis and early warning algorithms, allowing for quickly detecting emerging large-scale events from collected tweets. Subsequently, our system computes the energy of each collected event dataset, and then encapsulates ranked temporal, spatial and topical keywords into a structured node for event-entity extraction, in order to learn and update event ontologies for fast response of emergent events. The preliminary experimental results demonstrate that our developed system is workable, allowing for prediction of possible evolution for early warning of critical incidents with a dynamic ontology engineering.","PeriodicalId":442230,"journal":{"name":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","volume":"46 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2492517.2500260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper, we describe our work on extracting entities from the online social messages regarding emergent events for ontology learning, which can contribute to a solution for quick response of emerging disastrous events. Our work started with the development of a real-time event detection system using a data-cluster slicing approach which combines social data analysis and early warning algorithms, allowing for quickly detecting emerging large-scale events from collected tweets. Subsequently, our system computes the energy of each collected event dataset, and then encapsulates ranked temporal, spatial and topical keywords into a structured node for event-entity extraction, in order to learn and update event ontologies for fast response of emergent events. The preliminary experimental results demonstrate that our developed system is workable, allowing for prediction of possible evolution for early warning of critical incidents with a dynamic ontology engineering.
利用本体学习中的在线社会数据进行事件跟踪和应急响应
在本文中,我们描述了我们从关于突发事件的在线社交消息中提取实体用于本体学习的工作,这有助于快速响应新出现的灾难性事件。我们的工作开始于使用数据集群切片方法开发实时事件检测系统,该方法结合了社交数据分析和早期预警算法,允许从收集的tweet中快速检测新出现的大规模事件。然后,我们的系统计算每个收集到的事件数据集的能量,然后将排序的时间、空间和主题关键字封装到一个结构化节点中进行事件实体提取,从而学习和更新事件本体,以快速响应突发事件。初步的实验结果表明,所开发的系统是可行的,可以通过动态本体工程来预测可能的演化,从而对关键事件进行早期预警。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信