Distributed data fusion algorithms for tracking a maneuvering target

L. Fong
{"title":"Distributed data fusion algorithms for tracking a maneuvering target","authors":"L. Fong","doi":"10.1109/ICIF.2007.4408001","DOIUrl":null,"url":null,"abstract":"The focus of this paper is on examining the accuracy of two existing state vector fusion methods, weighted covariance fusion (WCF) and information matrix fusion (IMF), in a multi-sensor environment for computing the fused estimates from distributed Kahnan filters tracking a single maneuvering target. Each sensor tracker utilized in the Reference Cartesian Coordinate System (RCCS) is described for target tracking when the radar measures range, bearing and elevation angle in the Spherical Coordinate System (SCS). Simulation results show that the IMF method has more efficient and robust capabilities of improving tracking accuracy than the WCF method.","PeriodicalId":298941,"journal":{"name":"2007 10th International Conference on Information Fusion","volume":"62 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 10th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2007.4408001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The focus of this paper is on examining the accuracy of two existing state vector fusion methods, weighted covariance fusion (WCF) and information matrix fusion (IMF), in a multi-sensor environment for computing the fused estimates from distributed Kahnan filters tracking a single maneuvering target. Each sensor tracker utilized in the Reference Cartesian Coordinate System (RCCS) is described for target tracking when the radar measures range, bearing and elevation angle in the Spherical Coordinate System (SCS). Simulation results show that the IMF method has more efficient and robust capabilities of improving tracking accuracy than the WCF method.
机动目标跟踪的分布式数据融合算法
本文重点研究了两种状态向量融合方法加权协方差融合(WCF)和信息矩阵融合(IMF)在多传感器环境下对跟踪单个机动目标的分布式Kahnan滤波器进行融合估计计算的准确性。描述了雷达在球坐标系(SCS)中测量距离、方位和仰角时,在参考笛卡尔坐标系(RCCS)中使用的每个传感器跟踪器对目标的跟踪。仿真结果表明,与WCF方法相比,IMF方法在提高跟踪精度方面具有更高的效率和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信