A Local Binary Patterns and Shape Priors Based Texture Segmentation Method

Erkin Tekeli, M. Çetin, A. Erçil
{"title":"A Local Binary Patterns and Shape Priors Based Texture Segmentation Method","authors":"Erkin Tekeli, M. Çetin, A. Erçil","doi":"10.1109/SIU.2007.4298755","DOIUrl":null,"url":null,"abstract":"We propose a shape and data driven texture segmentation method using local binary patterns (LBP) and active contours. In particular, we pass textured images through a new LBP-based filter, which produces non-textured images. In this \"filtered\" domain each textured region of the original image exhibits a characteristic intensity distribution. In this domain we pose the segmentation problem as an optimization problem in a Bayesian framework. The cost functional contains a data-driven term, as well as a term that brings in information about the shapes of the objects to be segmented. We solve the optimization problem using level set-based active contours. Our experimental results on synthetic and real textures demonstrate the effectiveness of our approach in segmenting challenging textures as well as its robustness to missing data and occlusions.","PeriodicalId":315147,"journal":{"name":"2007 IEEE 15th Signal Processing and Communications Applications","volume":"28 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 15th Signal Processing and Communications Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2007.4298755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a shape and data driven texture segmentation method using local binary patterns (LBP) and active contours. In particular, we pass textured images through a new LBP-based filter, which produces non-textured images. In this "filtered" domain each textured region of the original image exhibits a characteristic intensity distribution. In this domain we pose the segmentation problem as an optimization problem in a Bayesian framework. The cost functional contains a data-driven term, as well as a term that brings in information about the shapes of the objects to be segmented. We solve the optimization problem using level set-based active contours. Our experimental results on synthetic and real textures demonstrate the effectiveness of our approach in segmenting challenging textures as well as its robustness to missing data and occlusions.
基于局部二值模式和形状先验的纹理分割方法
提出了一种基于局部二值模式(LBP)和活动轮廓的形状和数据驱动纹理分割方法。特别是,我们将纹理图像通过一个新的基于lbp的过滤器,该过滤器产生非纹理图像。在这个“过滤”的域中,原始图像的每个纹理区域都表现出特征强度分布。在这个领域中,我们把分割问题作为贝叶斯框架下的优化问题。代价函数包含一个数据驱动的项,以及一个引入要分割的对象形状信息的项。我们使用基于水平集的活动轮廓来解决优化问题。我们在合成和真实纹理上的实验结果证明了我们的方法在分割具有挑战性的纹理方面的有效性,以及它对缺失数据和遮挡的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信