A comparative study of fMPE and RDLT approaches to LVCSR

Jian Xu, Zhijie Yan, Qiang Huo
{"title":"A comparative study of fMPE and RDLT approaches to LVCSR","authors":"Jian Xu, Zhijie Yan, Qiang Huo","doi":"10.1109/ISCSLP.2012.6423511","DOIUrl":null,"url":null,"abstract":"This paper presents a comparative study of two discriminatively trained feature transform approaches, namely feature-space minimum phone error (fMPE) and region-dependent linear transform (RDLT), to large vocabulary continuous speech recognition (LVCSR). Experiments are performed on an LVCSR task of conversational telephone speech transcription using about 2,000 hours training data. Starting from a maximum likelihood (ML) trained GMM-HMM based baseline system, recognition accuracy and run-time efficiency of different variants of the above two methods are evaluated, and a specific RDLT approach is identified and recommended for deployment in LVCSR applications.","PeriodicalId":186099,"journal":{"name":"2012 8th International Symposium on Chinese Spoken Language Processing","volume":"38 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Symposium on Chinese Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCSLP.2012.6423511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a comparative study of two discriminatively trained feature transform approaches, namely feature-space minimum phone error (fMPE) and region-dependent linear transform (RDLT), to large vocabulary continuous speech recognition (LVCSR). Experiments are performed on an LVCSR task of conversational telephone speech transcription using about 2,000 hours training data. Starting from a maximum likelihood (ML) trained GMM-HMM based baseline system, recognition accuracy and run-time efficiency of different variants of the above two methods are evaluated, and a specific RDLT approach is identified and recommended for deployment in LVCSR applications.
fMPE与RDLT方法在LVCSR中的比较研究
本文对两种判别训练的特征变换方法——特征空间最小电话误差(fMPE)和区域相关线性变换(RDLT)在大词汇量连续语音识别(LVCSR)中的应用进行了比较研究。实验进行了LVCSR任务会话电话语音转录使用约2000小时的训练数据。从基于最大似然(ML)训练的GMM-HMM基线系统出发,评估了上述两种方法的不同变体的识别精度和运行时效率,并确定了一种特定的RDLT方法,并推荐了在LVCSR应用中部署的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信