Multiframe Blind Deconvolution for Object and PSF Recovery for Astronomical Imaging

J. Christou, E. Hege, S. Jefferies
{"title":"Multiframe Blind Deconvolution for Object and PSF Recovery for Astronomical Imaging","authors":"J. Christou, E. Hege, S. Jefferies","doi":"10.1364/srs.1995.rwa2","DOIUrl":null,"url":null,"abstract":"Ground-based imaging of astronomical objects typically requires some form of post-processing to realize the full information content in the recorded image. The recorded image can be expressed as which is the standard expression for incoherent imaging in the absence of noise. \ni(r→) is the measured target, \no(r→) is the true object distribution, \np(r→) represents the point spread function (PSF) of the optical system, and * denotes the convolution operation. Thus, when the PSF is known, inversion of this expression will yield the object distribution. However, in many cases, the PSF is either poorly determined or unknown. Thus standard deconvolution techniques cannot be applied.","PeriodicalId":184407,"journal":{"name":"Signal Recovery and Synthesis","volume":"36 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Recovery and Synthesis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/srs.1995.rwa2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ground-based imaging of astronomical objects typically requires some form of post-processing to realize the full information content in the recorded image. The recorded image can be expressed as which is the standard expression for incoherent imaging in the absence of noise. i(r→) is the measured target, o(r→) is the true object distribution, p(r→) represents the point spread function (PSF) of the optical system, and * denotes the convolution operation. Thus, when the PSF is known, inversion of this expression will yield the object distribution. However, in many cases, the PSF is either poorly determined or unknown. Thus standard deconvolution techniques cannot be applied.
天体多帧盲反卷积与天文成像PSF恢复
天文物体的地面成像通常需要某种形式的后处理来实现记录图像中的全部信息内容。所记录的图像可以表示为:这是无噪声情况下非相干成像的标准表达式。i(r→)为测量目标,o(r→)为真实物体分布,p(r→)为光学系统的点扩散函数(PSF), *为卷积运算。因此,当已知PSF时,该表达式的反转将得到对象分布。然而,在许多情况下,PSF要么不确定,要么未知。因此,标准反褶积技术不能应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信