{"title":"A Systematic Survey on Photorealistic Computer Graphic and Photographic Image Discrimination","authors":"G. Birajdar, Mukesh D. Patil","doi":"10.1142/s0219467823500377","DOIUrl":null,"url":null,"abstract":"The advent in graphic rendering software and technological progress in hardware can generate or modify photorealistic computer graphic (CG) images that are difficult to identify by human observers. Computer-generated images are used in magazines, film and advertisement industry, medical and insurance agencies, social media, and law agencies as an information carrier. The forged computer-generated image created by the malicious user may distort social stability and impacts on public opinion. Hence, the precise identification of computer graphic and photographic image (PG) is a significant and challenging task. In the last two decades, several researchers have proposed different algorithms with impressive accuracy rate, including a recent addition of deep learning methods. This comprehensive survey presents techniques dealing with CG and PG image classification using machine learning and deep learning. In the beginning, broad classification of all the methods in to five categories is discussed in addition to generalized framework of CG detection. Subsequently, all the significant works are surveyed and are grouped into five types: image statistics methods, acquisition device properties-based techniques, color, texture, and geometry-based methods, hybrid methods, and deep learning methods. The advantages and limitations of CG detection methods are also presented. Finally, major challenges and future trends in the CG and PG image identification field are discussed.","PeriodicalId":177479,"journal":{"name":"Int. J. Image Graph.","volume":"56 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Image Graph.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219467823500377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The advent in graphic rendering software and technological progress in hardware can generate or modify photorealistic computer graphic (CG) images that are difficult to identify by human observers. Computer-generated images are used in magazines, film and advertisement industry, medical and insurance agencies, social media, and law agencies as an information carrier. The forged computer-generated image created by the malicious user may distort social stability and impacts on public opinion. Hence, the precise identification of computer graphic and photographic image (PG) is a significant and challenging task. In the last two decades, several researchers have proposed different algorithms with impressive accuracy rate, including a recent addition of deep learning methods. This comprehensive survey presents techniques dealing with CG and PG image classification using machine learning and deep learning. In the beginning, broad classification of all the methods in to five categories is discussed in addition to generalized framework of CG detection. Subsequently, all the significant works are surveyed and are grouped into five types: image statistics methods, acquisition device properties-based techniques, color, texture, and geometry-based methods, hybrid methods, and deep learning methods. The advantages and limitations of CG detection methods are also presented. Finally, major challenges and future trends in the CG and PG image identification field are discussed.