{"title":"The knowledge gradient algorithm using locally parametric approximations","authors":"Bolong Cheng, A. Jamshidi, Warrren B Powell","doi":"10.1109/WSC.2013.6721477","DOIUrl":null,"url":null,"abstract":"We are interested in maximizing a general (but continuous) function where observations are noisy and may be expensive. We derive a knowledge gradient policy, which chooses measurements which maximize the expected value of information, while using a locally parametric belief model which uses linear approximations around regions of the function, known as clouds. The method, called DC-RBF (Dirichlet Clouds with Radial Basis Functions) is well suited to recursive estimation, and uses a compact representation of the function which avoids storing the entire history. Our technique allows for correlated beliefs within adjacent subsets of the alternatives and does not pose any a priori assumption on the global shape of the underlying function. Experimental work suggests that the method adapts to a range of arbitrary, continuous functions, and appears to reliably find the optimal solution.","PeriodicalId":223717,"journal":{"name":"2013 Winter Simulations Conference (WSC)","volume":"11 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Winter Simulations Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2013.6721477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We are interested in maximizing a general (but continuous) function where observations are noisy and may be expensive. We derive a knowledge gradient policy, which chooses measurements which maximize the expected value of information, while using a locally parametric belief model which uses linear approximations around regions of the function, known as clouds. The method, called DC-RBF (Dirichlet Clouds with Radial Basis Functions) is well suited to recursive estimation, and uses a compact representation of the function which avoids storing the entire history. Our technique allows for correlated beliefs within adjacent subsets of the alternatives and does not pose any a priori assumption on the global shape of the underlying function. Experimental work suggests that the method adapts to a range of arbitrary, continuous functions, and appears to reliably find the optimal solution.