“Missing-As-Complete” (MAC) Strategy and Hybrid Loss Guided Network Training for Seismic Data Reconstruction

Xue Fei, Yongchang Hui, Bangyu Wu, Rongwei Wang, Ximeng Lian
{"title":"“Missing-As-Complete” (MAC) Strategy and Hybrid Loss Guided Network Training for Seismic Data Reconstruction","authors":"Xue Fei, Yongchang Hui, Bangyu Wu, Rongwei Wang, Ximeng Lian","doi":"10.1109/IGARSS46834.2022.9883163","DOIUrl":null,"url":null,"abstract":"Missing trace reconstruction is a basic step in seismic data processing workflow. Recently, many deep learning based seismic data reconstruction methods have been proposed. However, lack of label data can impair the performance for practical applications due to domain gaps on seismic data prior. In this research, we propose a “Missing-As-Complete” (MAC) strategy for training networks to solve the problem of missing labels in practical situation. Specially, the missing seismic data is directly taken as the “complete” target. While the input is seismic data consisted of missing trace and a second missing trace mask. A hybrid loss function FFL+SSIM +L1 based on the focal frequency loss (FFL), structural similarity (SSIM) and L1 norm is used to further improve the reconstruction performance. Experiments on synthetic data demonstrate that the network can reconstruct reasonable results by the proposed method.","PeriodicalId":426003,"journal":{"name":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","volume":"4 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS46834.2022.9883163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Missing trace reconstruction is a basic step in seismic data processing workflow. Recently, many deep learning based seismic data reconstruction methods have been proposed. However, lack of label data can impair the performance for practical applications due to domain gaps on seismic data prior. In this research, we propose a “Missing-As-Complete” (MAC) strategy for training networks to solve the problem of missing labels in practical situation. Specially, the missing seismic data is directly taken as the “complete” target. While the input is seismic data consisted of missing trace and a second missing trace mask. A hybrid loss function FFL+SSIM +L1 based on the focal frequency loss (FFL), structural similarity (SSIM) and L1 norm is used to further improve the reconstruction performance. Experiments on synthetic data demonstrate that the network can reconstruct reasonable results by the proposed method.
“完全缺失”(MAC)策略和混合损失引导网络训练的地震数据重建
缺失道重建是地震数据处理流程中的一个基本步骤。近年来,人们提出了许多基于深度学习的地震数据重建方法。然而,由于之前地震数据的域间隙,缺乏标签数据会影响实际应用的性能。在本研究中,我们提出了一种用于训练网络的“缺失-完整”(MAC)策略来解决实际情况下标签缺失的问题。特别是,将缺失的地震数据直接作为“完整”的目标。而输入是地震数据,由缺失道和第二个缺失道掩码组成。采用基于焦频率损失(FFL)、结构相似度(SSIM)和L1范数的混合损失函数FFL+SSIM +L1进一步提高了重建性能。在综合数据上的实验表明,该方法可以重构出合理的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信