The use of wavelet transform as a preprocessor for the neural network detection of EEG spikes

T. Kalayci, O. Ozdamar, N. Erdol
{"title":"The use of wavelet transform as a preprocessor for the neural network detection of EEG spikes","authors":"T. Kalayci, O. Ozdamar, N. Erdol","doi":"10.1109/SECON.1994.324252","DOIUrl":null,"url":null,"abstract":"In this study, the wavelet transform is used to process EEG data as input to a feed forward neural network for the detection of epileptogenic transient waveforms. The compression capability of wavelet transform provided the inclusion of data before and after the spike for contextual information without increasing input size of the neural network. The network is trained for the detection of spikes and non-spikes. The results show that wavelet transform can be used to provide more relevant information for improving the detection of epileptogenic spikes for automated EEG monitoring of seizure patients.<<ETX>>","PeriodicalId":119615,"journal":{"name":"Proceedings of SOUTHEASTCON '94","volume":"26 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SOUTHEASTCON '94","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.1994.324252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

In this study, the wavelet transform is used to process EEG data as input to a feed forward neural network for the detection of epileptogenic transient waveforms. The compression capability of wavelet transform provided the inclusion of data before and after the spike for contextual information without increasing input size of the neural network. The network is trained for the detection of spikes and non-spikes. The results show that wavelet transform can be used to provide more relevant information for improving the detection of epileptogenic spikes for automated EEG monitoring of seizure patients.<>
利用小波变换作为预处理,实现了神经网络对脑电图峰值的检测
在本研究中,采用小波变换对脑电数据进行处理,作为前馈神经网络的输入,用于检测致痫瞬态波形。小波变换的压缩能力在不增加神经网络输入大小的情况下,提供了在峰值前后包含上下文信息的数据。该网络被训练用于检测尖峰和非尖峰。结果表明,小波变换可以为癫痫患者的自动脑电图监测提供更多的相关信息,以提高对致痫性峰的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信